Background: Polycystic ovary syndrome (PCOS) is an endocrine disrupting disorder affecting about 10% of reproductive-aged women. PCOS diagnosis may be delayed several years and may require multiple physicians, resulting in lost time for risk-reducing interventions. Menstrual tracking apps are a potential tool to alert women of their risk while also prompting evaluation from a medical professional.
Objective: The primary objective of this study was to develop and pilot test the irregular cycle feature, a predictive model that generated a PCOS risk score, in the menstrual tracking app, Clue. The secondary objectives were to run the model using virtual test subjects, create a quantitative risk score, compare the feature's risk score with that of a physician, and determine the sensitivity and specificity of the model before empirical testing on human subjects.
Methods: A literature review was conducted to generate a list of signs and symptoms of PCOS, termed variables. Variables were then assigned a probability and built into a Bayesian network. Questions were created based on these variables. A total of 9 virtual test subjects were identified using self-reported menstrual cycles and answers to the feature's questions. Upon completion of the questionnaire, a Result Screen and Doctor's Report summarizing the probability of having PCOS was displayed. This provided information about PCOS and data to facilitate diagnosis by a medical professional. To assess the accuracy of the feature, the same set of 9 virtual test subjects was assigned probabilities by the feature and the physician, who served as the gold standard. The feature recommended individuals with a score greater than or equal to 25% to follow-up with a physician. Differences between the feature and physician scores were evaluated using a t test and a Pearson correlation coefficient in 8 of the 9 virtual test subjects. A second iteration was conducted to assess the feature's probability capabilities.
Results: The irregular cycle feature's first iteration produced 1 false-positive compared with the physician score and had an absolute mean difference of 15.5% (SD 15.1%) among the virtual test subjects. The second iteration had 2 false positives compared with the physician score and had an absolute mean difference of 18.8% (SD 13.6%). The feature overpredicted the virtual test subjects' risk of PCOS compared with the physician. However, a significant positive correlation existed between the feature and physician score (Pearson correlation coefficient=0.82; P=.01). The second iteration performed worse, with a Pearson correlation coefficient of 0.73 (P=.03).
Conclusions: The first iteration of the feature outperformed the second and better predicted the probability of PCOS. Although further research is needed with a more robust sample size, this pilot study indicates the potential value for developing a screening tool to prompt high-risk subjects to seek evaluation by a medical professional.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256750 | PMC |
http://dx.doi.org/10.2196/15094 | DOI Listing |
J Clin Med
December 2024
Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan.
Mandibular gingival squamous cell carcinoma (SCC) is the second most common oral cancer after tongue cancer. As these carcinomas often invade the mandible early, accurately defining the resection extent is important. This report highlights the use of preoperative virtual surgery data, computer-aided design and manufacturing (CAD/CAM) technology, surgical guidance, and extended reality (XR) support in achieving highly accurate marginal mandibulectomy without recurrence or metastasis.
View Article and Find Full Text PDFSensors (Basel)
January 2025
University-Industrial Cooperation Corps of HiVE Center, Wonkwang Health Science University, 514, Iksan-daero, Iksan-si 54538, Republic of Korea.
Virtual reality (VR) technology has gained popularity across various fields; however, its use often induces cybersickness, characterized by symptoms such as dizziness, nausea, and eye strain. This study investigated the differences in cybersickness levels and head movement patterns under three distinct VR viewing conditions: dynamic VR (DVR), static VR (SVR), and a control condition (CON) using a simulator. Thirty healthy adults participated, and their head movements were recorded using the Meta Quest 2 VR headset and analyzed using Python.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Geosciences, Yangtze University, Wuhan 430100, China.
Roadside tree segmentation and parameter extraction play an essential role in completing the virtual simulation of road scenes. Point cloud data of roadside trees collected by LiDAR provide important data support for achieving assisted autonomous driving. Due to the interference from trees and other ground objects in street scenes caused by mobile laser scanning, there may be a small number of missing points in the roadside tree point cloud, which makes it familiar for under-segmentation and over-segmentation phenomena to occur in the roadside tree segmentation process.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Civil Engineering and Architecture, University of Catania, 64 Santa Sofia Street, 95123 Catania, Italy.
Eye-tracking technologies are emerging in research aiming to understand the visual behavior of cyclists to improve their safety. These technologies gather real-time information to reveal what the cyclists look at and how they respond at a specific location and time. This systematic review investigates the use of eye-tracking systems to improve cyclist safety.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of AI Convergence, Sungshin Women's University, 34 da-gil 2, Bomun-ro, Seongbuk-gu, Seoul 02844, Republic of Korea.
This paper proposes a machine learning approach to detect threats using short-term PPG (photoplethysmogram) signals from a commercial smartwatch. In supervised learning, having accurately annotated training data is essential. However, a key challenge in the threat detection problem is the uncertainty regarding how accurately data labeled as 'threat' reflect actual threat responses since participants may react differently to the same experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!