As one of the most important components of the lake ecosystem, microorganisms from the freshwater and sediment play an important role in many ecological processes. However, the difference and correlation of bacterial community between these two niches were not clear. This study investigated the diversity of microbial community of freshwater and sediment samples from fifteen locations in Poyang Lake wetland. The correlation between the bacterial community and physicochemical property of Poyang Lake wetland was analyzed by artificial neural network (ANN). Our results demonstrated that the freshwater and sediment bacterial community were dominated by groups of the Bacteroidetes (23.33%) and β-Proteobacteria (22.54%) separately, whereas, Canalipalpata, Bacillariophyta, Gemmatimonadetes, and Verrucomicrobia were detected in freshwater niches only. Phylogenetic analysis further indicated that bacterial composition in freshwater significantly differed with the sediment niches. There are 34 unique species accounted for 85% in fresh water samples and 28 unique species accounted for 82% in sediment samples. Cluster analysis further proved that all the samples from freshwater niches clustered closely together, far from the rest sediment samples. ANN analysis revealed that the freshwater with high N and P nutrients will greatly increase the diversity of the bacterial communities. In general, both environmental physicochemical properties, not each factor independently, contributed to the shift in the bacterial community structure. The five tributaries (Gan, Fu, Xin, Rao, Xiu Rivers) play a vital role in shaping the bacterial communities of Poyang Lake. This study provides new insights for understanding of microbial community compositions and structures of Poyang Lake wetland.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455635PMC
http://dx.doi.org/10.1007/s42770-020-00285-2DOI Listing

Publication Analysis

Top Keywords

bacterial community
20
poyang lake
20
freshwater sediment
16
lake wetland
16
sediment samples
12
bacterial
8
freshwater
8
artificial neural
8
neural network
8
network ann
8

Similar Publications

Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1).

View Article and Find Full Text PDF

Thermal sensitivity and niche plasticity of generalist and specialist leaf-endophytic bacteria in Mangrove Kandelia obovata.

Commun Biol

January 2025

Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China.

Leaf endospheres harbor diverse bacterial communities, comprising generalists and specialists, that profoundly affect ecosystem functions. However, the ecological dynamics of generalist and specialist leaf-endophytic bacteria and their responses to climate change remain poorly understood. We investigated the diversity and environmental responses of generalist and specialist bacteria within the leaf endosphere of mangroves across China.

View Article and Find Full Text PDF

As conservation agricultural practices continue to spread, there is a need to understand how reduced tillage impacts soil microbes. Effects of no till (NT) and disk till (DT) relative to moldboard plow (MP) were investigated in a long-term experiment established on Chernozem. Results showed that conservation practices, especially NT, increased total, active and microbial biomass carbon.

View Article and Find Full Text PDF

Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent.

View Article and Find Full Text PDF

In this study, a large drinking water reservoir (Fengshuba Reservoir) was chosen as a representative case, and the bacterial communities in the sediments and soils of Water-level fluctuating zone (WLFZ) as well as their responses to heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) were systematically investigated. The results indicated that the abundance and diversity of the bacterial community obviously changed with seasonal hydrological variations in sediments, and the absolute abundance and composition of bacteria community differed significantly between the sediment phase and soil phase. Bacteria with the ability to degrade pollutants rapidly proliferate and gain ascendancy in the soil phase, with Burkholderia-Caballeronia-Paraburkholderia (B-C-P) and Bradyrhizobium forming the core of the largest community.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!