In this study, rapeseed was pretreated by steam explosion pretreatment technology and subsequently pressed to prepare rapeseed oil. GC, UPLC, and HPLC techniques were employed to analyze the quality characteristics of the rapeseed oil, including the canolol content and other quality characteristics. Additionally, the effect of steam explosion pretreatment technology on the canolol content of rapeseed oil was studied and the formation mechanism of canolol elucidated. The results revealed that when the steam explosion pressure reached 1.0 MPa, the canolol content of the tested oil increased from 41.21 to 2,168.69 mg/kg (52.63-fold increase) and that sinapic acid played a significant role in the conversion of canolol. Thus, the sinapine was converted into the intermediate (sinapic acid) by hydrolysis, which in turn was transformed into canolol through decarboxylation. The instantaneous high-energy environment generated by steam explosion pretreatment could intensify the hydrolysis and decarboxylation reactions of sinapine and sinapinic acid, thereby significantly increasing the canolol content of the oil. To prove the superiority of steam explosion pretreatment, we compared it with other pretreatment technologies, including traditional high-temperature roasting and popular microwave pretreatment. The results revealed that rapeseed oil prepared by steam explosion pretreatment displayed the best quality characteristics. This study can be a reference for the preparation process of rapeseed oil with superhigh canolol content and superior quality characteristics using steam explosion pretreatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215231PMC
http://dx.doi.org/10.1002/fsn3.1502DOI Listing

Publication Analysis

Top Keywords

steam explosion
32
explosion pretreatment
28
rapeseed oil
24
canolol content
24
quality characteristics
20
pretreatment technology
12
canolol
9
pretreatment
9
oil
8
oil superhigh
8

Similar Publications

An Extensive Study of an Eco-Friendly Fireproofing Process of Lignocellulosic × Particles and Their Application in Flame-Retardant Panels.

Polymers (Basel)

January 2025

Laboratory of Physical Chemistry of Materials (LCPM), Campus Fanar, Faculty of Sciences II, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon.

Increasing the flame retardancy of lignocellulosic materials such as × can effectively enable their wide use. This study examines the fireproofing process of Miscanthus particles using an eco-friendly process by grafting phytic acid and urea in aqueous solution. Miscanthus particles underwent a steam explosion step before being grafted.

View Article and Find Full Text PDF

Xylooligosaccharides: A comprehensive review of production, purification, characterization, and quantification.

Food Res Int

February 2025

Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, Ningbo 315100, China. Electronic address:

Xylooligosaccharides (XOS), short-chain polymers with prebiotic properties, have gained significant commercial attention over the past few decades due to their potential as nutraceutical components. Derived from lignocellulosic biomass (LCB), XOS serve as health promoting compounds with applications across multiple sectors, including food pharmaceutical and cosmetic. This comprehensive review provides an overview of XOS production, purification, characterization, and quantification, highlighting their derivation from various sources such as agricultural waste, agro-economical forest residues, and nutrient-dense energy crops.

View Article and Find Full Text PDF

Energetic materials often possess different polymorphs that exhibit distinguishable performances. As a typical energetic material, hexanitrohexaazaisowurtzitane (CL-20 or HNIW) is one of the most powerful explosives nowadays. Phase transition of CL-20 induced by ubiquitous water vapor leading to an increase in sensitivity and a decrease in energy level is a key bottleneck that limits the widespread application of CL-20-based explosives.

View Article and Find Full Text PDF

In this study, steam explosion (SE) was applied to produce Xuehua pear soup (XPS) at different steam explosion pressure. The results showed that 0.3-0.

View Article and Find Full Text PDF

Combined use of steam explosion, alkali, and microbial methods improving the yield, structure and properties of soluble dietary fiber from bamboo shoot shells.

Food Chem

January 2025

College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China; Wuhu Green Food Industry Research Institute Co., Ltd., 241000 Wuhu, China; Wuhu Hight Biotechnology Co., Ltd, 241000 Wuhu, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000 Wuhu, China. Electronic address:

Developing an effective method for extracting soluble dietary fiber (SDF) from bamboo shoot shell (BSS) is of great significance for the resource utilization of BSS. Here, we proposed the combinational strategy of steam explosion (SE), alkaline extraction (AE), and microbial extraction (ME) to enhance BSS-SDF yield. The highest yield of 28.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!