Objectives: Zinc is an effective factor in the reproductive system. Insulin resistance (IR) is known as an important disorder in patients with polycystic ovary syndrome (PCOS). Mammalian target of rapamycin (, which controls key cell activities, in particular, is activated in disorders such as PCOS. The present study was conducted to observe the therapeutic effects of organic zinc on IR, gene expression, and pathogenesis of PCOS in a rat model induced-PCOS.

Materials And Methods: Experimental treatments were performed on control and treated groups, consisting of healthy controls (Control, water, and standard feed intake and daily injection of sesame oil alone), Polycystic control (PCO, injection of 4 mg/kg estradiol valerate (EV) for four weeks). Treated groups (PCO-ZM 25, PCO-ZM 75, and PCO-ZM 175) after 4 weeks of receiving EV, were daily given three levels of 25, 75, and 175 mg zinc methionine/kg BW for 15 days, respectively.

Results: Injection of EV dramatically increased body and ovarian weights, levels of LH, testosterone, estradiol, triglyceride, fasting insulin, fasting glucose, HOMA-IR, IGF-1, gene expression of , and number of cysts (<0.05). It also reduced the level of progesterone, HDL-C, and the number of antral follicles (<0.05). However, by increasing zinc-methionine application especially at 175 mg/kg BW, the induction effects of EV were improved on ovarian cysts (<0.05).

Conclusion: Organic zinc showed beneficial effects in the EV induced PCOS rats via decreased insulin resistance and expression, restored the hormonal profile, and decreased the number of cysts in the ovaries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206839PMC
http://dx.doi.org/10.22038/IJBMS.2019.36004.8586DOI Listing

Publication Analysis

Top Keywords

therapeutic effects
8
effects organic
8
organic zinc
8
insulin resistance
8
rat model
8
polycystic ovary
8
ovary syndrome
8
gene expression
8
treated groups
8
pco-zm pco-zm
8

Similar Publications

Background & Aims: Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.

View Article and Find Full Text PDF

Synergistic two-step inhibition approach using a combination of trametinib and onvansertib in KRAS and TP53-mutated colorectal adenocarcinoma.

Biomed Pharmacother

December 2024

Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea. Electronic address:

Colorectal malignancies associated with KRAS and TP53 mutations led us to investigate the effects of combination therapy targeting KRAS, MEK1, or PLK1 in colorectal cancer. MEK1 is downstream of RAS in the MAPK pathway, whereas PLK1 is a mitotic kinase of the cell cycle activated by MAPK and regulated by p53. Bioinformatics analysis revealed that patients with colorectal cancer had a high expression of MAP2K1 and PLK1.

View Article and Find Full Text PDF

Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.

View Article and Find Full Text PDF

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!