Background: Brain metastases challenge daily clinical practice, and the mechanisms by which cancer cells cross the blood-brain barrier remain largely undeciphered. Angiopoietin-like 4 (ANGPTL4) proteolytic fragments have controversial biological effects on endothelium permeability. Here, we studied the link between ANGPTL4 and the risk of brain metastasis in cancer patients.

Materials And Methods: From June 2015 to June 2016, serum samples from 113 cancer patients were prospectively collected, and ANGPTL4 concentrations were assessed. Using a murine model of brain metastases, we investigated the roles of nANGPTL4 and cANGPTL4, the two cleaved fragments of ANGPTL4, in the occurrence of brain metastases.

Results: An ANGPTL4 serum concentration over 0.1 ng/mL was associated with decreased overall-survival. Multivariate analyses found that only breast cancer brain metastases were significantly associated with elevated ANGPTL4 serum concentrations. 4T1 murine breast cancer cells were transfected with either or -encoding cDNAs. Compared to mice injected with wild-type 4T1 cells, mice injected with nANGPTL4 cells had shorter median survival ( < 0.05), while mice injected with cANGPTL4 had longer survival ( < 0.01). On tissue sections, compared to wild-type mice, mice injected with nANGPTL4 cells had significantly larger surface areas of lung metastases ( < 0.01), and mice injected with cANGPTL4 had significantly larger surface areas of brain metastases ( < 0.01).

Conclusions: In this study, we showed that a higher expression of Angiopoietin-like 4 Fibrinogen-Like Domain (cANGPTL4) was associated with an increased risk of brain metastases in women with breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210011PMC
http://dx.doi.org/10.18632/oncotarget.27553DOI Listing

Publication Analysis

Top Keywords

brain metastases
24
mice injected
20
breast cancer
16
risk brain
12
expression angiopoietin-like
8
angiopoietin-like fibrinogen-like
8
fibrinogen-like domain
8
domain cangptl4
8
brain
8
metastases women
8

Similar Publications

Purpose: In CheckMate 204, nivolumab + ipilimumab showed high intracranial (IC) objective response rates (icORRs) in patients with melanoma brain metastases (MBMs). Using icORR as a surrogate for overall survival (OS) has prompted use of alternate response criteria. To set the stage for harmonized MBM trials, the aim of this exploratory analysis was to determine icORR using several response criteria and examine correlations of response with survival.

View Article and Find Full Text PDF

Background: The SEER Registry contains U.S. cancer statistics.

View Article and Find Full Text PDF

The Role of Radiotherapy in the Management of Melanoma Brain Metastases: An Overview.

Curr Treat Options Oncol

January 2025

Ella Lemelbaum Institute for Immuno Oncology, Chaim Sheba Medical Center, 6997801, Tel Aviv, Israel.

Clinical management of melanoma brain metastases is complex and requires multidisciplinary approach. With close collaboration between neurosurgeons, radiation oncologists and medical oncologists, melanoma patients with brain are offered different treatment modalities: surgery, radiation therapy, systemic therapy or combined treatments. Radiation therapy (whole brain radiotherapy- WBRT and stereotactic radiosurgery- SRS) is an integral part of treating melanoma brain metastases.

View Article and Find Full Text PDF

In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding microenvironment but also on the tumors capacity to adapt to - and actively manipulate - its niche. While targeting angiogenesis and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially and in extracranial sites containing neural components.

View Article and Find Full Text PDF

Glioma is characterized by high heterogeneity and poor prognosis. Attempts have been made to understand its diversity in both genetic expressions and radiomic characteristics, while few integrated the two omics in predicting survival of glioma. This study was intended to investigate the connection between glioma imaging and genome, and examine its predictive value in glioma mortality risk and tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!