A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing. | LitMetric

Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing.

Sci Rep

Department of Mechanical & Aerospace Engineering, University of Florida, Florida, 32611, USA.

Published: May 2020

An aerodynamic structure ubiquitous in Aves is the alula; a small collection of feathers muscularized near the wrist joint. New research into the aerodynamics of this structure suggests that its primary function is to induce leading-edge vortex (LEV) flow over bird's outer hand-wing to enhance wing lift when manuevering at slow speeds. Here, we explore scaling trends of the alula's spanwise position and its connection to this function. Specifically, we test the hypothesis that the relative distance of the alula from the wing tip is that which maximizes LEV-lift when the wing is spread and operated in a deep-stall flight condition. To test this, we perform experiments on model wings in a wind tunnel to approximate this distance and compare our results to positional measurements of the alula on spread-wing specimens. We found the position of the alula on non-aquatic birds selected for alula optimization to be located at or near the lift-maximizing position predicted by wind tunnel experiments. These findings shed new light on avian wing anatomy and the role of unconventional aerodynamics in shaping it.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220954PMC
http://dx.doi.org/10.1038/s41598-020-63181-7DOI Listing

Publication Analysis

Top Keywords

scaling trends
8
leading-edge vortex
8
wind tunnel
8
alula
5
trends bird's
4
bird's alular
4
alular feathers
4
feathers connection
4
connection leading-edge
4
vortex flow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!