The possibility of Bell inequality violations in quantum theory had a profound impact on our understanding of the correlations that can be shared by distant parties. Generalizing the concept of Bell nonlocality to networks leads to novel forms of correlations, the characterization of which is, however, challenging. Here, we investigate constraints on correlations in networks under the natural assumptions of no-signaling and independence of the sources. We consider the triangle network with binary outputs, and derive strong constraints on correlations even though the parties receive no input, i.e., each party performs a fixed measurement. We show that some of these constraints are tight, by constructing explicit local models (i.e. where sources distribute classical variables) that can saturate them. However, we also observe that other constraints can apparently not be saturated by local models, which opens the possibility of having nonlocal (but non-signaling) correlations in the triangle network with binary outputs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220922PMC
http://dx.doi.org/10.1038/s41467-020-16137-4DOI Listing

Publication Analysis

Top Keywords

nonlocality networks
8
no-signaling independence
8
constraints correlations
8
triangle network
8
network binary
8
binary outputs
8
local models
8
constraints
5
correlations
5
constraints nonlocality
4

Similar Publications

This study evaluates the efficacy of deep learning models in identifying infarct tissue on computed tomography perfusion (CTP) scans from patients with acute ischemic stroke due to large vessel occlusion, specifically addressing the potential influence of varying noise reduction techniques implemented by different vendors. We analyzed CTP scans from 60 patients who underwent mechanical thrombectomy achieving a modified thrombolysis in cerebral infarction (mTICI) score of 2c or 3, ensuring minimal changes in the infarct core between the initial CTP and follow-up MR imaging. Noise reduction techniques, including principal component analysis (PCA), wavelet, non-local means (NLM), and a no denoising approach, were employed to create hemodynamic parameter maps.

View Article and Find Full Text PDF

Local-non-local complementary learning network for 3D point cloud analysis.

Sci Rep

January 2025

School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, 110159, China.

Article Synopsis
  • Point cloud analysis is crucial for applications like mapping and autonomous driving, but challenges arise due to the unordered nature of point clouds that complicate feature extraction.
  • To improve this, the LNLCL-Net framework is introduced, which effectively separates local and non-local features and utilizes partial convolution to enhance feature representation.
  • The framework's Complementary Interactive Attention module allows for the adaptive integration of these features, leading to improved performance in classification and segmentation tasks across various benchmark datasets.
View Article and Find Full Text PDF

Vehicle re-identification with multiple discriminative features based on non-local-attention block.

Sci Rep

December 2024

Weifang Education Investment Group Co., Ltd., Weifang, 261108, China.

Vehicle re-identification (re-id) technology refers to a vehicle matching under a non-overlapping domain, that is, to confirm whether the vehicle target taken by cameras in different positions at different times is the same vehicle. Different identities of the same type of vehicles are one of the most challenging factors in the field of vehicle re-identification. The key to solve this difficulty is to make full use of the multiple discriminative features of vehicles.

View Article and Find Full Text PDF

A non-local dual-stream fusion network for laryngoscope recognition.

Am J Otolaryngol

December 2024

Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Tianjin 300192, China; Institute of Otolaryngology of Tianjin, Tianjin, China; Key Laboratory of Auditory Speech and Balance Medicine, Tianjin, China; Key Clinical Discipline of Tianjin (Otolaryngology), Tianjin, China; Otolaryngology Clinical Quality Control Centre, Tianjin, China.

Purpose: To use deep learning technology to design and implement a model that can automatically classify laryngoscope images and assist doctors in diagnosing laryngeal diseases.

Materials And Methods: The experiment was based on 3057 images (normal, glottic cancer, granuloma, Reinke's Edema, vocal cord cyst, leukoplakia, nodules and polyps) from the dataset Laryngoscope8. A classification model based on deep neural networks was developed and tested.

View Article and Find Full Text PDF

Graph neural network interatomic potentials (GNN-IPs) are gaining significant attention due to their capability of learning from large datasets. Specifically, universal interatomic potentials based on GNN, usually trained with crystalline geometries, often exhibit remarkable extrapolative behavior toward untrained domains, such as surfaces and amorphous configurations. However, the origin of this extrapolation capability is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!