Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The surface charge/surface potential of the air/water interface plays a key role in many natural and industrial processes. Since the first decade of the 20 century, there are many theoretical proposals to describe the surface charge in the presence of different moieties. However, a complete and consistent description of the interfacial layer remains elusive. More recently, the theoretical frameworks and experimental data get complementary support from the simulation at a molecular level. This paper reviews the recent developments from the theoretical, experimental and simulation aspects. The combined results indicated that the interaction between hydration shells of adsorbed ions and the H-bonds network of surface water plays a critical role in the ionic adsorption. The factor should be incorporated into the conventional theories to correctly predict the ion distribution near the air/water surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5650/jos.ess20024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!