This study investigated the effect of papain on the demulsification of peanut oil body emulsion extracted using an aqueous enzymatic method and the associated mechanism. The highest free oil yield using papain (92.39%) was obtained under the following conditions: an enzymatic hydrolysis temperature of 55°C, sample-to-water ratio of 1:3, enzyme concentration of 1400 U/g, and an enzymatic hydrolysis time of 3 h. Papain degraded the peanut oil body protein to small-molecular-weight peptides (≤ 14.4 kDa). Compared to the emulsion before enzymatic hydrolysis, the amino acid content in the aqueous phase was higher after enzymatic hydrolysis, the viscosity of the oil body emulsion was lower, and the particle diameter of the emulsion was significantly larger. The following demulsification mechanism was derived. Papain degrades the protein on the peanut oil body and dissolves it in water. The outer side of the oil body loses the protection of electrostatic repulsion and steric hindrance provided by the membrane protein. This causes the viscosity of the emulsion system and the molecular steric hindrance to decrease. As a result, the oil droplets gather and eventually demulsify. The results of this study provide the theoretical basis for the instability in oil body emulsions and are expected to promote the application of enzymatic demulsification in industry.

Download full-text PDF

Source
http://dx.doi.org/10.5650/jos.ess19297DOI Listing

Publication Analysis

Top Keywords

oil body
28
peanut oil
16
enzymatic hydrolysis
16
body emulsion
12
oil
9
papain demulsification
8
demulsification peanut
8
steric hindrance
8
body
7
emulsion
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!