Clinical significance of Rutin (RUT) is limited by poor dissolution rate and low oral bioavailability. The study was designed to improve the physicochemical and therapeutic potential of the drug by formulating nanosuspension (NS) for osteoporosis. Rutin nanosuspension (RUT-NS) was prepared after screening a range of stabilizers and their combinations at a different concentration by antisolvent precipitation technique. Effect of precipitation on crystallinity (differential scanning calorimetry DSC, X-ray diffraction studies XRD), morphology (scanning electron microscopy, SEM) and chemical interaction (attenuated total reflectance fourier-transform infrared spectroscopy ATR-FTIR) were studied through biophysical techniques. An optimized nanosuspension exhibited a minimum particle size of 122.85 ± 5.02 nm with higher dissolution of RUT-NS (87. 63 ± 2.29%) as compared to pure drug (39.77 ± 2.8 6%). The enhanced intestine absorption and apparent permeability were achieved due to the improved particle size, surface area and dissolution. RUT-NS displayed greater (3 folds) AUC than pure drug. assays with RUT-NS depicted an increased cell proliferation, antioxidant (ROS) activity and osteocalcin production in MG-63 osteoblast cells. The augmented biochemical biomarkers and bone quality proved the protective effect of RUT-NS. The results supported RUT-NS as a potential therapy for maintaining bone health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10837450.2020.1765378 | DOI Listing |
Sci Rep
December 2024
Gansu Provincial Ecological Environment Engineering Assessment Center, Lanzhou, 730000, People's Republic of China.
In this study, polyethylene glycol (PEG) and dextran (Dex) were chemically modified to obtain amino-functionalized PEG (PEG-(NH)) and oxidized dextran (ODex). They were subsequently reacted via -NH and -CHO groups to synthesize a macromolecular Schiff base particle. The structures, morphologies, and thermal properties of the macromolecular Schiff base particle were characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetry analysis (TGA).
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, Brno, Czechia, Czechia.
Magnetorheological (MR) fluids can be utilized in one of the fundamental operating modes of which the gradient pinch mode has been the least explored. In this unique mode non-uniform magnetic field distributions are taken advantage of to develop a so-called Venturi-like contraction in MR fluids. By adequately directing magnetic flux the material can be made solidified in the regions near the flow channel wall, thus creating a passage in the middle of the channel for the fluid to pass through.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland.
The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.
View Article and Find Full Text PDFSci Rep
December 2024
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
A cost-effective industrial TiOSO solution was employed to fabricate visible light active sulfur-doped titanium dioxide (S-TiO) via a facile hydrothermal method. The effect of calcination temperature on morphology, particle size, crystallinity, and photocatalytic property of S-TiO was systematically investigated. Successful incorporation of sulfur into TiO was confirmed by carbon-sulfur analysis, X-ray photoelectron spectroscopy (XPS), and Energy dispersive spectrometer (EDS).
View Article and Find Full Text PDFVegetation restoration can be effective in containing gully head advance. However, the effect of vegetation restoration type on soil aggregate stability and erosion resistance at the head of the gully is unclear. In this study, five types of vegetation restoration-Pinus tabulaeformis (PT), Prunus sibirica (PS), Caragana korshinskii (CKS), Hippophae rhamnoides (HR), and natural grassland (NG, the dominant species is Leymus chinensis)-in the gully head were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!