Nonlinear metasurfaces offer new paradigm for boosting optical effect beyond limitations of conventional materials. In this work, we present an alternative way to produce pronounced third-harmonic generation (THG) based on nonlinear field resonances rather than linear field enhancement, which is a typical strategy for achieving a strong nonlinear response. By designing and studying a nonlinear plasmonic-graphene metasurface at terahertz regime with hybrid-guided modes and bound states in the continuum modes, it is found that a THG with a narrow bandwidth can be observed, thanks to the strong resonance generated between a weak THG field and these modes. Such strong nonlinear field resonance greatly enhances the photon-photon interactions, thus resulting in a large effective nonlinear coefficient of the whole system. This finding provides new opportunity for studying nonlinear optical metasurfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.391294DOI Listing

Publication Analysis

Top Keywords

nonlinear field
12
third-harmonic generation
8
nonlinear
8
field resonances
8
strong nonlinear
8
studying nonlinear
8
field
5
enhanced third-harmonic
4
generation induced
4
induced nonlinear
4

Similar Publications

The pressing demand for both established and innovative technologies to expand laser wavelengths has rendered high-performance nonlinear optical (NLO) crystals with large optical anisotropy indispensable. Here, centrosymmetric [SHC(NH)]CdBr (1) and pseudo-2D layered [SC(NH)]CdBr (2), as well as pseudo-3D noncentrosymmetric [SC(NH)]CdCl (3) are successfully synthesized through the introduction of π-conjugated SC(NH) groups. Compared to ionic compound 1 containing full-halogen coordination tetrahedra, covalent compounds 2 and 3 featuring novel polar [SC(NH)]CdX (X = Br, Cl) tetrahedral units demonstrate enhanced bandgaps (>4 eV) and birefringences (>0.

View Article and Find Full Text PDF

Neuromodulation with low-intensity focused ultrasound (LIFUS) holds significant promise for noninvasive treatment of neurological disorders, but its success relies heavily on accurately targeting specific brain regions. Computational model predictions can be used to optimize LIFUS, but uncertain acoustic tissue properties can affect prediction accuracy. The Monte Carlo method is often used to quantify the impact of uncertainties, but many iterations are generally needed for accurate estimates.

View Article and Find Full Text PDF

In recent years, heterostructures composed of two-dimensional (2D) materials have demonstrated broad application prospects across various domains, primarily attributed to their exceptional electrical and optical properties. The superior performance of these heterostructures is rooted in the interlayer interactions and the diversity of the constituent materials. Notably, their applications have been greatly advanced in optical fields such as photodetectors, lasers, modulators, optical sensors, and nonlinear optics.

View Article and Find Full Text PDF

A general tribo-dynamic model for lubricated clearance joints in spatial multibody systems.

Sci Rep

March 2025

National Key Laboratory of Marine Engine Science and Technology, Shanghai, 201108, China.

Existing tribo-dynamic models encounter challenges in accurately characterizing the intense coupling and notable nonlinearity between component deformation and oil film pressure in lubricated clearance joints. Consequently, a novel general tribo-dynamic coupling model based on an absolute coordinate framework has been developed in this paper. The equations of motion for flexible multibody systems are formulated based on the absolute nodal coordinate formulation.

View Article and Find Full Text PDF

Curved cylinders, if rigid, cannot roll on a surface like straight cylinders, but soft cylinders bent by specific stimuli can! Studying the autonomous locomotion of these soft robots and their interactions with the environment using finite element analysis is challenging due to the complex multiphysics of stimuli-responsive soft materials and nonlinear contact mechanics. In this pioneering work, we simulate the rolling of stimuli-bent cylinders on a surface using contact finite elements and introduce a simple yet effective pseudo-thermal field method. Our approach successfully reproduces several modes of autonomous locomotion observed experimentally, including phototropic locomotion, phototropic climbing on a slanted surface, steering under partial illumination, and backward rolling under alternating heat-light stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!