The unique properties of gallium oxide (GaO) have drawn increasing interest as a material suitable for high-power electronic and optical applications. Herein, we report the demonstration of low-loss GaO-core/SiO-cladding waveguides on Si substrate. We present the fabrication process and annealing treatments of the waveguide devices, and we characterize the corresponding effects on optical transmission for 3 common wavelengths: 633 nm, 1064 nm, and 1550 nm. The best propagation loss achieved for these wavelengths is measured to be -0.4±0.1dB/cm, -0.3±0.2dB/cm, and -2.4±0.5dB/cm, respectively. We discuss the major waveguide loss mechanisms, followed by results of pump and probe experiments using visible/IR wavelengths for waveguides treated under various post-fabrication annealing conditions. We also show nonlinear measurements for a 250 fs laser beam to offer additional insights into the loss mechanisms, which are consistent with the linear optical transmission performances. High waveguide laser-induced damage threshold (LIDT) of >2.5J/cm is measured at this pulse width, making GaO a potential candidate for high-power integrated photonic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.391036 | DOI Listing |
ACS Sens
January 2025
College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.
Superior to traditional multiplex photoelectrochemical (PEC) sensors, integrated multitarget assay on a single reconstructive electrode interface is promising in real-time detection through eliminating the need of specialized instrumentation and cumbersome interfacial modifications. Current interface reconstruction approaches including pH modulation and bioenzyme cleavage involve biohazardous and time-consuming operations, which cannot meet the demand for rapid, eco-friendly, and portable detection, which are detrimental to the development of multiplex PEC sensors toward portability. Herein, we report a pioneer work on IR-driven "four-to-one" multisignal conditioning to facile reconfigure electrode interface for multitarget detection via photoelectrochemical/photothermal dual mode.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory for Extreme Photonics and Instrumentation, Center for Optical & Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics (Haining), Zhejiang University, Hangzhou, China.
Silicon photonic signal processors promise a new generation of signal processing hardware with significant advancements in processing bandwidth, low power consumption, and minimal latency. Programmable silicon photonic signal processors, facilitated by tuning elements, can reduce hardware development cycles and costs. However, traditional programmable photonic signal processors based on optical switches face scalability and performance challenges due to control complexity and transmission losses.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
This study presents the design of a high-gain 16 × 16-slot antenna array with a low sidelobe level (SLL) using a tapered ridge gap waveguide feeding network for Ka-band applications. The proposed antenna element includes four cavity-backed slot antennas. A tapered feeding network is designed and utilized for unequal feeding of the radiating elements.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Materials, Imperial College London, London, SW7 2AZ, UK.
Topological Insulators (TIs) are promising platforms for Quantum Technology due to their topologically protected surface states (TSS). Plasmonic excitations in TIs are especially interesting both as a method of characterisation for TI heterostructures, and as potential routes to couple optical and spin signals in low-loss devices. Since the electrical properties of the TI surface are critical, tuning TI surfaces is a vital step in developing TI structures that can be applied in real world plasmonic devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!