In this paper, we present a shutter-based electro-optical modulator made of two parallel nanoelectromechanical silicon nitride string resonators. These strings are covered with electrically connected gold electrodes and actuated either by Lorentz or electrostatic forces. The in-plane string vibrations modulate the width of the gap between the strings. The gold electrodes on both sides of the gap act as a mobile mirror that modulate the laser light that is focused in the middle of this gap. These electro-optical modulators can achieve an optical modulation depth of almost 100% for a driving voltage lower than 1 mV at a frequency of 314 kHz. The frequency range is determined by the string resonance frequency, which can take values of the order of a few hundred kilohertz to several megahertz. The strings are driven in the strongly nonlinear regime, which allows a frequency tuning of several kilohertz without significant effect on the optical modulation depth.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.388324DOI Listing

Publication Analysis

Top Keywords

string resonators
8
gold electrodes
8
optical modulation
8
modulation depth
8
spectrally broadband
4
broadband electro-optic
4
electro-optic modulation
4
modulation nanoelectromechanical
4
string
4
nanoelectromechanical string
4

Similar Publications

Background: Intramedullary spinal cord abscess (ISCA) is a rare and serious condition with high disability and mortality rates. is known for its aggressive and disseminated abscess formation. However, ISCA caused by has only been reported in two cases.

View Article and Find Full Text PDF

Bioinspired Magnetized String with Tension-Dependent Eigenfrequencies for Wearable Human-Machine Interactions.

ACS Appl Mater Interfaces

December 2024

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China.

Article Synopsis
  • Flexible and wearable devices are proving useful for human-machine interactions (HMIs) and the Internet of Things, but there's a need for better communication storage and simpler designs.
  • A new approach inspired by natural tendons uses magnetized strings to detect vibrations; the strings' unique frequencies send signals through a single channel, allowing for multiple commands.
  • This method allows for customizable interactions by adjusting string tension, demonstrating potential use in areas like authentication, robotics, and other multifunctional applications.
View Article and Find Full Text PDF

Spinal metastasis (SMs) are the most encountered tumors of the spine. Their occurrence is expected roughly around one to two years after primary tumor diagnosis. Since the advent of Magnetic Resonance Imaging (MRI), this technology has been considered the gold standard for SMs diagnosis and characterization due to its precise ability to comprehend the rate of soft tissue compression/invasion (dural sac/nervous tissue), which is one of the main drivers of management strategies.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is the most common joint disease, which mainly damages articular cartilage and involves the whole joint tissue. It has the characteristics of long course, repeated symptoms and high disability rate, and the incidence trend is gradually increasing. Tetramethylpyrazine (TMP) is the main alkaloid active substance in Ligusticum wallichii, a traditional Chinese medicine, which has the effect of promoting blood circulation and dredging collaterals, and has a good effect on the treatment of early OA, but its molecular mechanism has not been fully clarified so far.

View Article and Find Full Text PDF

A Probabilistic Approach in the Search Space of the Molecular Distance Geometry Problem.

J Chem Inf Model

November 2024

Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Campinas 13083-859, Brazil.

The discovery of the three-dimensional shape of protein molecules using interatomic distance information from nuclear magnetic resonance (NMR) can be modeled as a discretizable molecular distance geometry problem (DMDGP). Due to its combinatorial characteristics, the problem is conventionally solved in the literature as a depth-first search in a binary tree. In this work, we introduce a new search strategy, which we call frequency-based search (FBS), that for the first time utilizes geometric information contained in the protein data bank (PDB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!