Causality implies that the optical constants of any material continue in the upper complex plane of photon energies or wavelengths as an analytic function. This is the basis for Kramers-Kronig dispersion relations to obtain ɛ from ɛ, or n from k. However, there have not been attempts to explore this continuation. This research focuses on such continuation and on applications thereof. An interesting property has been found: optical constants progressively smoothen when entering the upper complex plane. The continuation to complex energies is found to result in an average of the optical constants with a Lorentzian weight function. This optical-constant smoothening originated in a shift to the upper complex plane is naturally produced in optical constants that have been obtained by means of an optical instrument with a Lorentzian slit function. This smoothening results in reduced resolution through convolution with the slit function. A procedure that takes advantage of optical constants at complex energies is developed for optical-constant deconvolution. Deconvolution is performed locally, i.e., with no integration, and it consists of shifting the energy of the optical constants by an imaginary amount by means of a Taylor series expansion. The first correction term involves the derivative of the other optical constant. Even though deconvolution of optical constants measured with a Gaussian slit cannot be directly performed with the present method, an approach based on powers of the Lorentz function is also proposed. This procedure could be implemented as an analysis tool of a spectrophotometer or an ellipsometer; this tool would enable one to measure optical constants with a modest resolution and to improve it by post-processing them with the present scheme.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.390603DOI Listing

Publication Analysis

Top Keywords

optical constants
36
complex energies
12
upper complex
12
complex plane
12
optical
11
constants complex
8
constants
8
slit function
8
complex
6
function
5

Similar Publications

Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance.

View Article and Find Full Text PDF

Solvent influence on the optical absorption, frontier molecular orbitals, and electronic structure of 1-bromo adamantane.

J Mol Model

January 2025

Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, People's Republic of China.

Context: The study of the influence of solvent on 1-bromo adamantane (BAD) exposes prominent solvatochromatic shifts in the optical absorbance and substantial solvent effects on the electronic structure. This facilitates the molecular probe abilities for the BAD with respect to the surrounding environments such as dielectric constant and polarity. BAD exhibits positive solvatochromism for nonpolar solvents and negative solvatochromatic shifts for polar and aromatic solvents.

View Article and Find Full Text PDF

The current demand for highly sensitive, optical sensors in biodiagnostics has prompted the development of ultrathin metal coatings on a range of substrates. Given the potential attenuation of the signal from a plasmonic sensor for the detection of fluorescent molecules when an adhesion layer between the substrate and coating is employed, this study examines the impact of various factors on the adhesion strength between gold coatings and substrates comprising glass and cyclo-olefin-polymer (COP). The objective is to identify potential configurations for high adhesion strength, thereby eliminating the need for an adhesion layer in the fabrication of optical sensors with gold coatings for diagnostic applications or to utilize a minimal adhesion layer thickness.

View Article and Find Full Text PDF

Observation of Real-Time Spin-Orbit Torque Driven Dynamics in Antiferromagnetic Thin Film.

Adv Mater

January 2025

Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA.

In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra-fast, energy-efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin-orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture.

View Article and Find Full Text PDF

The fungal genus Fusarium is a treasure-trove of structurally diverse secondary metabolites, contributed greatly by marine-derived strains. A new cedrane sesquiterpene, fusacedrol (1), and a new fusarin member, fusarin M (2), were isolated from F. graminearum 12Ⅱ2N that was isolated as an endophyte from the marine brown alga Sargassum sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!