We demonstrate a robust linearly polarized 365 W, very low amplitude noise, single frequency master oscillator power amplifier at 1064 nm. Power scaling was done through a custom large mode area fiber with a mode field diameter of 30 µm. No evidence of stimulated Brillouin scattering or modal instabilities are observed. The relative intensity noise is reduced down to -160 dBc/Hz between 2 kHz and 10 kHz via a wide band servo loop (1 MHz bandwidth). We achieve 350 W of isolated power, with a power stability < 0.7% RMS over 1100 hours of continuous operation and a near diffraction limited beam (M < 1.1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.385095 | DOI Listing |
Biosensors (Basel)
January 2025
State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular dynamics. In this study, we introduce an image reconstruction method based on the edge-preserving interpolation method (EPIM), which transforms rapidly acquired low-resolution FLIM data into high-pixel images, thereby eliminating the need for extended acquisition times.
View Article and Find Full Text PDFBMJ Surg Interv Health Technol
January 2025
Department of Surgical Oncology, Kanazawa Medical University, Kahoku-gun, Japan.
Objectives: The advantages of indocyanine green (ICG) fluorescence cholangiography have been emphasized, but its disadvantages remain unclear. This study investigated the advantages and disadvantages of this modality, particularly the optimal timing of administration of ICG fluorescence.
Design: This was a retrospective analysis of prospectively collected patient data.
Comput Biol Med
January 2025
University of Rwanda, Rwanda. Electronic address:
Deep learning methods have significantly improved medical image analysis, particularly in detecting COVID-19 chest X-rays. Nonetheless, these methodologies frequently inhibit some drawbacks, such as limited interpretability, extensive computational resources, and the need for extensive datasets. To tackle these issues, we introduced two novel algorithms: the Dynamic Co-Occurrence Grey Level Matrix (DC-GLM) and the Contextual Adaptation Multiscale Gabor Network (CAMSGNeT).
View Article and Find Full Text PDFAnalyst
January 2025
Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China.
The choices of matrices and protocols for sample deposition are critical factors, which impact each other in the matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). Previous reports on MALDI MS matrices have only compared their performances in terms of their MS signal intensities and provided optical microphotos or MALDI MS images of sample spots but typically lacked quantitative evaluation. Therefore, there is an urgent need to develop a multivariate model to evaluate the performance of different combinations of matrices and sample protocols.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physics, Beihang University, Beijing 100191, China.
Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!