AI Article Synopsis

  • Dual-comb spectroscopy using a silicon Mach-Zehnder modulator is introduced for the first time, assessing the properties like tunability and coherence of frequency combs generated by these modulators.
  • A new method called frequency-tuning dual-comb spectroscopy is proposed, which leverages the adjustable frequency spacing of electro-optical frequency combs for high-resolution absorption spectroscopy.
  • In a proof of concept demonstration, the technique successfully scanned a 24 GHz optical bandwidth with a resolution of 1 GHz.

Article Abstract

Dual-comb spectroscopy using a silicon Mach-Zehnder modulator is reported for the first time. First, the properties of frequency combs generated by silicon modulators are assessed in terms of tunability, coherence, and number of lines. Then, taking advantage of the frequency agility of electro-optical frequency combs, a new technique for fine resolution absorption spectroscopy is proposed, named frequency-tuning dual-comb spectroscopy, which combines dual-comb spectroscopy and frequency spacing tunability to measure optical spectra with detection at a unique RF frequency. As a proof of concept, a 24 GHz optical bandwidth is scanned with a 1 GHz resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.390041DOI Listing

Publication Analysis

Top Keywords

dual-comb spectroscopy
16
frequency-tuning dual-comb
8
spectroscopy silicon
8
silicon mach-zehnder
8
frequency combs
8
spectroscopy
5
frequency
5
mach-zehnder modulators
4
modulators dual-comb
4
mach-zehnder modulator
4

Similar Publications

Cantilever-enhanced dual-comb photoacoustic spectroscopy.

Photoacoustics

August 2024

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China.

Dual-comb photoacoustic spectroscopy (DC-PAS) advances spectral measurements by offering high-sensitivity and compact size in a wavelength-independent manner. Here, we present a novel cantilever-enhanced DC-PAS scheme, employing a high-sensitivity fiber-optic acoustic sensor based on an optical cantilever and a non-resonant photoacoustic cell (PAC) featuring a flat-response characteristic. The dual comb is down-converted to the audio frequency range, and the resulting multiheterodyne sound waves from the photoacoustic effect, are mapped into the response frequency region of the optical cantilever microphone.

View Article and Find Full Text PDF
Article Synopsis
  • - The new pump-probe system uses a 60-MHz dual-comb oscillator and ultra-low noise supercontinuum to improve measurement speed and reduce complexity, especially for low excitation fluences.
  • - This setup is capable of operating in different modes and allows for detailed study of excited-state dynamics, specifically of the non-fullerene electron acceptor Y6, which is important for solar cell technology.
  • - The system achieves high sensitivity in differential transmission measurements and aims to enhance ultrafast spectroscopy research.
View Article and Find Full Text PDF

Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators.

Front Optoelectron

November 2024

Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electrical and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.

Mid-infrared (MIR) Kerr microcombs are of significant interest for portable dual-comb spectroscopy and precision molecular sensing due to strong molecular vibrational absorption in the MIR band. However, achieving a compact, octave-spanning MIR Kerr microcomb remains a challenge due to the lack of suitable MIR photonic materials for the core and cladding of integrated devices and appropriate MIR continuous-wave (CW) pump lasers. Here, we propose a novel slot concentric dual-ring (SCDR) microresonator based on an integrated chalcogenide glass chip, which offers excellent transmission performance and flexible dispersion engineering in the MIR band.

View Article and Find Full Text PDF

In measuring cerebral blood flow (CBF) noninvasively using optical techniques, diffusing-wave spectroscopy is often combined with near-infrared spectroscopy to obtain a reliable blood flow index. Measuring the blood flow index at a determined depth remains the ultimate goal. In this study, we present a simple approach using dual-comb lasers where we simultaneously measure the absorption coefficient (μ), the reduced scattering coefficient (μ ), and dynamic properties.

View Article and Find Full Text PDF

In this Letter, we propose a high-resolution dual-comb spectroscopy (DCS) in the mid-infrared (MIR) region. A broadband electro-optic frequency comb (EOFC) with a line spacing of 13 GHz is generated in the near-infrared region. The injection locking technique is employed to lock the distributed feedback (DFB) laser to each comb line of the 34 comb lines as the seed laser for the subsequent electro-optic modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!