A complementary metal oxide semiconductor (CMOS) compatible fabrication method for creating three-dimensional (3D) meta-films is presented. In contrast to metasurfaces, meta-films possess structural variation throughout the thickness of the film and can possess a sub-wavelength scale structure in all three dimensions. Here we use this approach to create 2D arrays of cubic silicon nitride unit cells with plasmonic inclusions of elliptical metallic disks in horizontal and vertical orientations with lateral array-dimensions on the order of millimeters. Fourier transform infrared (FTIR) spectroscopy is used to measure the infrared transmission of meta-films with either horizontally or vertically oriented ellipses with varying eccentricity. Shape effects due to the ellipse eccentricity, as well as localized surface plasmon resonance (LSPR) effects due to the effective plasmonic wavelength are observed in the scattering response. The structures were modeled using rigorous coupled wave analysis (RCWA), finite difference time domain (Lumerical), and frequency domain finite element (COMSOL). The silicon nitride support structure possesses a complex in-plane photonic crystal slab band structure due to the periodicity of the unit cells. We show that adjustments to the physical dimensions of the ellipses can be used to control the coupling to this band structure. The horizontally oriented ellipses show narrow, distinct plasmonic resonances while the vertically oriented ellipses possess broader resonances, with lower overall transmission amplitude for a given ellipse geometry. We attribute this difference in resonance behavior to retardation effects. The ability to couple photonic slab modes with plasmonic inclusions enables a richer space of optical functionality for design of metamaterial-inspired optical components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.389077 | DOI Listing |
BMC Geriatr
December 2024
College of Sports and Health, Shandong Sport University, Jinan, Shandong, China.
Background: This study aimed to investigate the modulatory role of prefrontal cortex (PFC) activity in older adults with mild cognitive impairment (MCI) when sensory cues were removed or presented inaccurately (i.e., increased sensory complexity) during sensory manipulation of a balance task.
View Article and Find Full Text PDFClin Biomech (Bristol)
December 2024
Graduate Program in Physical Therapy, Universidade Cidade de São Paulo (UNICID), São Paulo, Brazil; Motion Analysis Lab, Universidade Cidade de São Paulo (UNICID), São Paulo, Brazil. Electronic address:
Background: Several measures of the center of pressure have been used to describe magnitude and structure of the postural sway in individuals with Parkinson's disease (PD). This study aimed to examine whether both the magnitude and structure of the center of pressure trajectory can differentiate PD individuals with and without freezing of gait in both On- and Off-medication states and with eyes open and closed.
Methods: Twenty-four individuals with PD (14 without and 10 with freezing of gait) were tested.
Langmuir
November 2024
Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Aging Clin Exp Res
November 2024
Faculty of Health Sciences, Department of Physical Therapy, The Neuromuscular & Human Performance Laboratory, Ariel University, Ariel, Israel.
Front Psychol
October 2024
Image Processing Lab, Parc Científic, Universitat de València, València, Spain.
The experiments allowed by current machine learning models imply a revival of the debate on the causes of specific trends of human visual psychophysics. Machine learning facilitates the exploration of the effect of specific visual goals (such as image segmentation) by different neural architectures in different statistical environments in an unprecedented manner. In this way, (1) the principles behind psychophysical facts such as the non-Euclidean nature of human color discrimination and (2) the emergence of human-like behaviour in artificial systems can be explored under a new light.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!