Parasitic substrate mode readily appears in GaN-based laser diodes (LDs) because of insufficient optical confinement, especially for green LDs. Substrate modes affect the behavior of a LD severely, including the laser beam quality, the optical output power, the longitudinal mode stability, and the maximum modulation speed. In this article, systematic studies on the n-cladding layer (CL) design to suppress the substrate mode of GaN-based green LDs were carried out. We established a contour map to describe the relationship between the optical confinement (determined by the thickness and the refractive index) of n-CL and the substrate mode intensity by simulating the near-field pattern and the far-field pattern. We found that it was difficult to obtain the Gaussian-shape far-field pattern using AlGaN as a cladding layer due to the appearance of cracks induced by tensile strain. However, this can be realized by introducing quaternary AlInGaN as a cladding layer since refractive index and strain can be tuned separately for quaternary alloy.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.389880DOI Listing

Publication Analysis

Top Keywords

substrate mode
16
mode gan-based
8
gan-based green
8
laser diodes
8
optical confinement
8
green lds
8
far-field pattern
8
cladding layer
8
mode
5
suppression substrate
4

Similar Publications

Temperature-sensitive driving assembled fluorescence hydrogel based dual-mode sensor for adsorbing and detecting of heavy metal cadmium ions in food and water.

Food Chem

December 2024

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.

The denatured bovine serum albumin (dBSA) is coupled with the CdTe/CdS quantum dot and the resulting CdTe/CdS@dBSA complex is assembled and retained in the poly(n-isopropyl acrylamide) (PNIPAM) hydrogel via regulating temperature and pH to form the CdTe/CdS@dBSA-PNIPAM fluorescence hydrogel substrate, which is able to adsorb and sense cadmium ions (Cd). Based on this fluorescence hydrogel, a fluorescence and colorimetric dual-mode detection system is established to quantitatively detect Cd with a limit of detection (LOD) of 2.88 nM for fluorescence detection and 11.

View Article and Find Full Text PDF

Clinical Manifestations.

Alzheimers Dement

December 2024

Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.

Background: Mild Behavioral Impairment (MBI) is a condition characterized by neuropsychiatric symptoms (NPS) in older adults without dementia, serving as a precursor to various forms of dementia. This study explores the association between NPS and functional connectivity (FC) within the default mode network (DMN), executive control network (ECN), and salience network (SN) across three high-risk cohorts: mild cognitive impairment (due to Alzheimer's) (MCI, n = 79), cerebrovascular disease (CVD, n = 144), and Parkinson's disease (PD, n = 132).

Method: A total of 367 participants were recruited from the Ontario Neurodegenerative Disease Research Initiative (ONDRI).

View Article and Find Full Text PDF

DtpC was isolated from the ditryptophenaline biosynthetic pathway found in filamentous fungi as a cytochrome P450 (P450) that catalyzes the dimerization of diketopiperazines. More recently, several similar P450s were discovered. While a vast majority of such P450s generate asymmetric diketopiperazine dimers, DtpC and other fungal P450s predominantly catalyze the formation of symmetric dimer products.

View Article and Find Full Text PDF

Two-Dimensional transition metal dichalcogenides have been the subject of extensive attention thanks to their unique properties and atomically thin structure. Because of its unprecedented room-temperature magnetic properties, iron-doped MoS (Fe:MoS) is considered the next-generation quantum and magnetic material. It is essential to understand Fe:MoS's thermal behavior since temperature and thermal load/activation are crucial for their magnetic properties and the current nano and quantum devices have been severely limited by thermal management.

View Article and Find Full Text PDF

Dual-mode ultrasensitive detection of acute leukemia gene Pax-5a based on smart DNA programmed dendrimer.

Biosens Bioelectron

December 2024

State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.

Accurate and sensitive detection of Pax-5a gene is the basis of early diagnosis and prediction of acute leukemia. This research aims to develop a universal dual-mode sensing method enables ultrasensitive gene detection based on smart control of DNA amplification by nucleic acid beacons e to form programmed dendrimer. The Pax-5a target gene triggers the opening of smart gate hairpin probe (Hp), exposing the stem sequence as the primer to bind with padlock probe for rolling circle amplification (RCA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!