Light scattering and aberrations limit optical microscopy in biological tissue, which motivates the development of adaptive optics techniques. Here, we develop a method for wavefront correction in adaptive optics with reflected light and deep neural networks compatible with an epi-detection configuration. Large datasets of sample aberrations which consist of excitation and detection path aberrations as well as the corresponding reflected focus images are generated. These datasets are used for training deep neural networks. After training, these networks can disentangle and independently correct excitation and detection aberrations based on reflected light images recorded from scattering samples. A similar deep learning approach is also demonstrated with scattering guide stars. The predicted aberration corrections are validated using two photon imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.392794DOI Listing

Publication Analysis

Top Keywords

adaptive optics
12
reflected light
12
deep neural
12
neural networks
12
wavefront correction
8
correction adaptive
8
optics reflected
8
light deep
8
excitation detection
8
reflected
4

Similar Publications

Development of a vegetation canopy reflectance sensor and its diurnal applicability under clear sky conditions.

Front Plant Sci

January 2025

Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.

The spectral reflectance provides valuable information regarding vegetation growth and plays an important role in agriculture, forestry, and grassland management. In this study, a small, portable vegetation canopy reflectance (VCR) sensor that can operate throughout the day was developed. The sensor includes two optical bands at 710 nm and 870 nm, with the light separated by filters, and has a field of view of 28°.

View Article and Find Full Text PDF

Objective: To present a remodeling of the electroretinogram waveform using a covariance matrix to identify regions of interest and distinction between a control and attention deficit/hyperactivity disorder (ADHD) group. Electroretinograms were recorded in n = 25 ADHD (16 male; age 11.9 ± 2.

View Article and Find Full Text PDF

Purpose: To measure visual acuity at three different defocus planes in pseudophakic subjects with varying levels of spherical aberration induced by an adaptive optics visual simulator. The study aimed to simulate Extended Depth of Focus (EDOF) intraocular lenses (IOLs).

Setting: Private hospital (IMO, Barcelona, Spain).

View Article and Find Full Text PDF

Scaling and networking a modular photonic quantum computer.

Nature

January 2025

Xanadu Quantum Technologies Inc., Toronto, Ontario, Canada.

Photonics offers a promising platform for quantum computing, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility.

View Article and Find Full Text PDF

Vision impairment affects nearly 2.2 billion people globally, and nearly half of these cases could be prevented with early diagnosis and intervention-underscoring the urgent need for reliable and scalable detection methods for conditions like diabetic retinopathy and age-related macular degeneration. Here we propose a distributed deep learning framework that integrates self-supervised and domain-adaptive federated learning to enhance the detection of eye diseases from optical coherence tomography images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!