Partial aperture imaging is a combination of two different techniques; coded aperture imaging and imaging through an aperture that is only a part of the complete disk, commonly used as the aperture of most imaging systems. In the present study, the partial aperture is a ring where the imaging through this aperture resolves small details of the observed scene similarly to the full disk aperture with the same diameter. However, unlike the full aperture, the annular aperture enables using the inner area of the ring for other applications. In this study, we consider the implementation of this special aperture in medical imaging instruments, such as endoscopes, for imaging internal cavities in general and of the human body in particular. By using this annular aperture, it is possible to transfer through the internal open circle of the ring other elements such as surgical tools, fibers and illumination devices. In the proposed configuration, light originated from a source point passes through an annular coded aperture and creates a sparse, randomly distributed, intensity dot pattern on the camera plane. A combination of the dot patterns, each one recorded only once, is used as the point spread hologram of the imaging system. The image is reconstructed digitally by cross correlation between the object intensity response and the point spread hologram.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.391713 | DOI Listing |
Tree Physiol
January 2025
Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Background: A cylindrical free-air chamber, the Attix FAC, is used for absolute air-kerma measurements of low-energy photon beams at the University of Wisconsin Medical Radiation Research Center. Correction factors for air-kerma measurements of specific beams were determined in the 1990s. In order to measure air-kerma rates of beams in development, new correction factors must be computed.
View Article and Find Full Text PDFSci Rep
January 2025
School of Transportation and Geometics Engineering, Yangling Vocational & Technical College, Yangling, 712100, Shaanxi, China.
This work aims to improve the accuracy and efficiency of flood disaster monitoring, including monitoring before, during, and after the flood, to achieve accurate extraction of flood disaster change information. A modified U-Net network model, incorporating the Transformer multi-head attention mechanism (TM), is developed specifically for the characteristics of Synthetic Aperture Radar (SAR) images. By integrating the TM, the model effectively prioritizes image regions relevant to flood disasters.
View Article and Find Full Text PDFUltrasonics
January 2025
The Center for Fast Ultrasound Imaging, Department of Health Technology. Technical University of Denmark, Ørsteds Plads Building 349, Lyngby, DK-2800, Denmark.
Non-invasive estimation of pressure differences using 2D synthetic aperture ultrasound imaging offers a precise, low-cost, and risk-free diagnostic tool. Unlike invasive techniques, this preserves natural blood flow and avoids the limitations of devices that occupy lumen space. This paper evaluates a previously published estimator, modified to incorporate Singular Value Decomposition (SVD) echo-cancellation, using data from ten healthy volunteers and one patient.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Satellite Application Division, Korea Aerospace Research Institute (KARI), Daejeon 34133, Republic of Korea.
For change detection in synthetic aperture radar (SAR) imagery, amplitude change detection (ACD) and coherent change detection (CCD) are widely employed. However, time-series SAR data often contain noise and variability introduced by system and environmental factors, requiring mitigation. Additionally, the stability of SAR signals is preserved when calibration accounts for temporal and environmental variations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!