Non-orthogonal multiple access (NOMA) is a promising scheme for flexible passive optical networks (PONs), which provides high throughput and overall improved system performance. NOMA with the successive interference cancellation (SIC)-based receiver, which is used to detect the multiplexed signal in a sequential fashion, requires perfect channel state information and suffers from the error propagation problem. In this paper, we propose a convolutional neural network (CNN) based signal demodulation method for NOMA-PON, which performs channel estimation and signal detection in a joint manner. The CNN is first trained offline using the captured data for a given received optical power and then used to recover the data stream directly in the online mode. We show by experimental demonstration that, the proposed CNN-based receiver (Rx) outperforms the conventional SIC-based Rx and is more robust to the nonlinear distortion. We show that for the CNN-based system with 20 km optical fiber, the required received optical power levels at a bit error rate (BER) of 1×10 are lower by 4, 3 and 2.5 dB for power allocation ratios of 0.16, 0.25, 0.36, respectively compared with SIC-based system. In addition, the BER performance of CNN deteriorates considerably less with non-linear distortion compared with SIC.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.392535DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
signal demodulation
8
demodulation method
8
method noma-pon
8
received optical
8
optical power
8
neural network-based
4
signal
4
network-based signal
4
noma-pon non-orthogonal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!