A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Function and Mechanisms of Truncated BDNF Receptor TrkB.T1 in Neuropathic Pain. | LitMetric

Function and Mechanisms of Truncated BDNF Receptor TrkB.T1 in Neuropathic Pain.

Cells

Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Published: May 2020

Brain-derived neurotrophic factor (BDNF), a major focus for regenerative therapeutics, has been lauded for its pro-survival characteristics and involvement in both development and recovery of function within the central nervous system (CNS). However, studies of tyrosine receptor kinase B (TrkB), a major receptor for BDNF, indicate that certain effects of the TrkB receptor in response to disease or injury may be maladaptive. More specifically, imbalance among TrkB receptor isoforms appears to contribute to aberrant signaling and hyperpathic pain. A truncated isoform of the receptor, TrkB.T1, lacks the intracellular kinase domain of the full length receptor and is up-regulated in multiple CNS injury models. Such up-regulation is associated with hyperpathic pain, and TrkB.T1 inhibition reduces neuropathic pain in various experimental paradigms. Deletion of TrkB.T1 also limits astrocyte changes in vitro, including proliferation, migration, and activation. Mechanistically, TrkB.T1 is believed to act through release of intracellular calcium in astrocytes, as well as through interactions with neurotrophins, leading to cell cycle activation. Together, these studies support a potential role for astrocytic TrkB.T1 in hyperpathic pain and suggest that targeted strategies directed at this receptor may have therapeutic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290366PMC
http://dx.doi.org/10.3390/cells9051194DOI Listing

Publication Analysis

Top Keywords

hyperpathic pain
12
receptor
8
receptor trkbt1
8
neuropathic pain
8
trkb receptor
8
trkbt1
6
pain
5
function mechanisms
4
mechanisms truncated
4
truncated bdnf
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!