Better knowledge of food webs and related ecological processes is fundamental to understanding the functional role of biodiversity in ecosystems. This is particularly true for pest regulation by natural enemies in agroecosystems. However, it is generally difficult to decipher the impact of predators, as they often leave no direct evidence of their activity. Metabarcoding via high-throughput sequencing (HTS) offers new opportunities for unraveling trophic linkages between generalist predators and their prey, and ultimately identifying key ecological drivers of natural pest regulation. Here, this approach proved effective in deciphering the diet composition of key predatory arthropods (nine species.; 27 prey taxa), insectivorous birds (one species, 13 prey taxa) and bats (one species; 103 prey taxa) sampled in a millet-based agroecosystem in Senegal. Such information makes it possible to identify the diet breadth and preferences of predators (e.g., mainly moths for bats), to design a qualitative trophic network, and to identify patterns of intraguild predation across arthropod predators, insectivorous vertebrates and parasitoids. Appropriateness and limitations of the proposed molecular-based approach for assessing the diet of crop pest predators and trophic linkages are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290477 | PMC |
http://dx.doi.org/10.3390/insects11050294 | DOI Listing |
Malar J
January 2025
Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
Background: Members of the Anopheles gambiae complex are major malaria vectors in sub-Saharan Africa. Their larval stages inhabit a variety of aquatic habitats in which, under natural circumstances, they are preyed upon by different taxa of aquatic macroinvertebrate predators. Understanding the potential impact of predators on malaria vector larval population dynamics is important for enabling integrated local mosquito control programmes with a stronger emphasis on biocontrol approaches.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biological Sciences, Royal Holloway, University of London, Egham, United Kingdom.
Species reintroductions are increasingly seen as important methods of biodiversity restoration. Reintroductions of red kites Milvus milvus and white-tailed eagles Halieaeetus albicilla to Britain, which were extirpated in the late 19th and early 20th centuries, represent major conservation successes. Here, we measured stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in feather keratin and bone collagen of museum specimens of red kites and white-tailed eagles, which were collected from across Scotland between the 1800s and 2010s.
View Article and Find Full Text PDFCurr Biol
December 2024
Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
Predation is an important driver of species-level change in modern and fossil ecosystems, often through selection for defensive phenotypes in prey responding to predation pressures over time. Records of changes in shell morphology and injury patterns in biomineralized taxa are ideal for demonstrating such adaptive responses. The rapid increase in diversity and abundance of biomineralizing organisms during the early Cambrian is often attributed to predation and an evolutionary arms race.
View Article and Find Full Text PDFEcol Lett
December 2024
Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA.
Climate change is shifting the timing of organismal life-history events. Although consequential food-web mismatches can emerge if predators and prey shift at different rates, research on phenological shifts has traditionally focused on single trophic levels. Here, we analysed >2000 long-term, monthly time series of phytoplankton, zooplankton, and fish abundance or biomass for the San Francisco, Chesapeake, and Massachusetts bays.
View Article and Find Full Text PDFJ Fish Biol
December 2024
Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, Massachusetts, USA.
Ecosystem management requires an integrated understanding of ecological interactions. In the Gulf of Maine (GoM), trophic information pertaining to commercially important groundfishes and nearshore prey communities is lacking. We characterized nearshore communities and groundfish diets using data collected from nearshore surveys (864 bottom trawls and 3638 stomach samples of six groundfish species) conducted biannually (spring and fall) in Midcoast Maine and Penobscot Bay from 2012 to 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!