Immune cells are present in the breast milk of several mammalian species; however, their immunological function and transmigration mechanisms to milk remain unknown. Some researchers hypothesize that milk leukocytes have a mammary gland (MG) origin and transmigrate thorough the paracellular pathway, but mammary alveolar epithelial cells strictly regulate the paracellular movement of milk components during lactation via barrier structures, such as tight junctions (TJs). To investigate this discrepancy, we compared leukocyte populations in mouse MG and milk and explored TJ protein expression profiles in MG leukocytes. The main subsets of milk leukocytes were CD8 and CD4 T cells displaying the memory phenotype. The proportions of myeloid, B, and dendritic cells were significantly lower in milk than in the MG. CD8 T cells expressed genes encoding the TJ proteins claudin-3, -7, -12, and ZO-1 at higher levels when compared with myeloid and B cells in the MG among lactating mice. Alveolar epithelial cells in the MG expressed claudin-3, -4, and -7. Administration of FTY720, an inhibitory agonist of sphingosine 1-phosphate receptor 1 that stabilizes TJ permeability, increased the myeloid cell proportion in milk. Different leukocyte populations in the MG and milk suggest active and selective mechanisms of cell transmigration to milk. Both TJ-forming components in alveolar epithelial cells from the MG and TJ protein expression profiles in leukocytes from the MG appear to regulate milk leukocyte populations. T cells are the main population in mouse breast milk and express similar profiles of TJ proteins as those in mammary alveolar epithelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jri.2020.103137DOI Listing

Publication Analysis

Top Keywords

alveolar epithelial
20
epithelial cells
20
milk
13
cells
12
breast milk
12
mammary alveolar
12
leukocyte populations
12
cells main
8
main population
8
population mouse
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!