Aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds.

Adv Food Nutr Res

Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain; Meat Technology Center, Parque Tecnológico de Galicia, Ourense, Galicia, Spain. Electronic address:

Published: January 2021

There is a growing concern about chronic diseases such as obesity, diabetes, hypertension, hypercholesterolemia, cancer and cardiovascular diseases resulting from profound changes in the western lifestyle. Aquaculture by-products are generated in large quantities and they can be profitably recycled through their bioactive compounds used for health or food supplements. Improving waste utilization in the field of aquaculture is essential for a sustainable industry to prevent or minimize the environmental impact. In this sense fish by-products are a great source of protein and omega-3 polyunsaturated fatty acids which are particularly studied on Atlantic salmon or rainbow trout. Fish protein hydrolysate (FPH) obtained from chemical, enzymatical and microbial hydrolysis of processing by-products are being used as a source of amino acids and peptides with high digestibility, fast absorption and important biological activities. Omega-3 polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) from fish discards have been reported to decrease postprandial triacylglycerol levels, reduction of blood pressure, platelet aggregation and the inflammatory response. Crustacean by-products can also be used to produce chitosan with antioxidant and antimicrobial activity for food and pharmaceutical industries and carotenoids with important biological activity. Seaweeds are rich in bioactive compounds such as alginate, carrageenan, agar, carotenoids and polyphenols with different biological activities such as antioxidant, anticancer, antidiabetic, antimicrobial or anti-inflammatory activity. Finally, regarding harvest microalgae, during the past decades, they were mainly used in the healthy food market, with >75% of the annual microalgal biomass production, used for the manufacture of powders, tablets, capsules or pills. We will report and discuss the present and future role of aquaculture by-products as sources of biomolecules for the design and development of functional foods/beverages. This chapter will focus on the main bioactive compounds from aquaculture by-products as functional compounds in food and their applications in biomedicine for the prevention and treatment of diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.afnr.2019.11.001DOI Listing

Publication Analysis

Top Keywords

aquaculture by-products
16
bioactive compounds
16
omega-3 polyunsaturated
8
polyunsaturated fatty
8
fatty acids
8
biological activities
8
by-products
6
aquaculture
5
compounds
5
by-products challenges
4

Similar Publications

Advanced oxidation processes (AOPs), including ionizing radiation treatment, are increasingly recognized as an effective method for the degradation of pharmaceutical pollutants, including non-steroidal anti-inflammatory drugs (NSAIDs). Nabumetone (NAB), a widely used NSAID prodrug, poses an environmental risk due to its persistence in aquatic ecosystems and its potential toxicity to non-target organisms. In this study, the radiolytic degradation of NAB was investigated under different experimental conditions (dose rate, radical scavenging, pH, matrix effect), and the toxicity of its degradation products was evaluated.

View Article and Find Full Text PDF

Simultaneous Determination of 12 Disinfection By-Products in Fish Muscles by Solvent Extraction Coupled With Gas Chromatography Equipped With an Electron Capture Detector.

J Sep Sci

December 2024

Key Laboratory of Yangtze River Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, the People's Republic of China.

Disinfection by-products (DBPs) have received considerable focus due to potential teratogenic, carcinogenic, and mutagenic effects; however, there is an evident gap in the availability of analytical methodologies for the simultaneous determination of DBPs in fish, especially iodinated DBPs. This paper developed an innovative analytical method for the simultaneous determination of 12 DBPs, including four trihalomethanes (THMs), three haloacetonitriles, and five iodinated THMs (I-THMs), in fish muscle, utilizing solvent extraction followed by gas chromatography with electron capture detection. The method incorporates tert-butyl methyl ether as an extraction solvent, performing efficient vortex mixing, extraction, and centrifugation under reduced temperature conditions to facilitate the processing of physically disrupted fish tissues.

View Article and Find Full Text PDF

A high-efficient electrochemical degradation of diclofenac in water on planar and microstructured 2D, and macroporous 3D boron-doped diamond electrodes: Identification of degradation and transformation products.

Chemosphere

December 2024

Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15 Bratislava, Slovak Republic; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic. Electronic address:

The highly efficient degradation of persistent organic substances by electrochemical advanced oxidation processes (EAOPs), which don't result in the formation of potentially harmful by-products, is crucial for the future of water management. In this study, boron-doped diamond electrodes (BDDE) with three morphologies (planar 2D, microstructured 2D, and macroporous 3D) were employed for the anodic oxidation of diclofenac (DCF) in two working electrolytes (NaCl and NaSO). In total, 11 by-products formed during the electrochemical oxidation of DCF were identified via HPLC-HRMS.

View Article and Find Full Text PDF
Article Synopsis
  • The European Green Deal emphasizes sustainability and the recovery of by-products, particularly in aquaculture, by integrating high-nutritional, bioactive molecules into animal feed.
  • Olive oil extraction produces by-products that, despite being potential pollutants, are rich in polyphenols known for their health benefits, including anti-inflammatory and antioxidant properties.
  • The study found that dietary supplementation with olive mill wastewater polyphenols improved growth performance in gilthead seabream and positively influenced gene expression related to metabolism, immunity, and oxidative stress, suggesting potential for future research in fish nutrition.
View Article and Find Full Text PDF

Gluten-free products lack bioactive compounds, while vegetable wastes from food manufacturing are still rich in nutrients. This study compared the antioxidants of gluten-free pastas enriched with vegetable by-products: the control formulation (66.7% rice and 33.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!