Engineering Microbes for Remediation of Oil Sands Tailings.

Trends Biotechnol

Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada; Metabolik Technologies Inc., Vancouver, BC, Canada; School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada. Electronic address:

Published: November 2020

AI Article Synopsis

  • - Synthetic biology and adaptive lab evolution are essential methods for creating biotech solutions to clean up oil sands tailings.
  • - There are many uncertainties and risks involved in deploying and regulating these engineered or evolved strains in the field.
  • - The text proposes an innovation strategy aimed at reducing risks and successfully implementing engineered bioremediation technologies.

Article Abstract

Synthetic biology and adaptive laboratory evolution are key tools for developing biotechnology platforms for the remediation of oil sands tailings. However, field deployment and subsequent regulation of engineered and/or evolved strains is rife with uncertainties and risks. Here, we detail an innovation strategy to derisk and deploy engineered bioremediation platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tibtech.2020.04.007DOI Listing

Publication Analysis

Top Keywords

remediation oil
8
oil sands
8
sands tailings
8
engineering microbes
4
microbes remediation
4
tailings synthetic
4
synthetic biology
4
biology adaptive
4
adaptive laboratory
4
laboratory evolution
4

Similar Publications

The pervasive presence of toluene in aquatic environments, primarily due to oil spills and industrial effluents, necessitates the development of effective and sustainable remediation strategies. This study introduces ZIF-8@DES-treated loofah sponge (ZIF-8@DLS), a novel adsorbent composite material, synthesized via an in situ process that integrates the high surface area of ZIF-8 with the natural loofah sponge. The composite was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), confirming the successful loading of ZIF-8 onto the loofah substrate.

View Article and Find Full Text PDF

Enhancing Biodegradation of Insoluble High Molecular Weight Polycyclic Aromatic Hydrocarbons in Macroemulsion (ME) Bioreactors with a Liquid-Liquid Interface.

ACS Appl Mater Interfaces

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.

Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.

View Article and Find Full Text PDF

Degradation of 15 halogenated hydrocarbons by 5 unactivated chemical oxidation oxidants.

Environ Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China.

Oxidants used in the ISCO technology usually require activation by activators to degrade contaminants. However, this study investigated degradation of 15 typical halogenated hydrocarbons by five common ISCO oxidants (PS, PMS, HO, KMnO, SPC) without activation in both pure water and real groundwater. Unactivated PS could degrade 14 halogenated hydrocarbons, excluding tetrachloromethane.

View Article and Find Full Text PDF

The remediation of oil-contaminated soil poses significant environmental challenges, often necessitating innovative approaches for effective and sustainable solutions. This study focuses on the synthesis, characterisation, and application of biodegradable capsules loaded with surfactant for enhanced oil remediation of a clean sand. By controlling the release properties of capsules, the research aims to overcome the limitations of conventional surfactant-based remediation methods, such as rapid washout and reduced efficacy over time.

View Article and Find Full Text PDF

Femtosecond-Laser-Ablated Porous Silver Nanowire Heater with Ultralow Driven-Voltage and Ultrafast Sensitivity for Highly Efficient Crude Oil Remedy.

Nano Lett

January 2025

Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

The development of viscous-crude oil and water separation technology is important for overcoming pollution caused by oil spills. Although some separators responding to light, electric, and temperature have been proposed, their poor structural homogeneity and inferior controllability, together with weak capillary forces, hinder the rapid salvage of viscous crude oil. Herein, a Joule-heated hydrophobic porous oil/water separator is reported, which has advantages of low energy consumption (169.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!