Inhibition of encephalomyocarditis virus replication by shRNA targeting 1C and 2A genes in vitro and in vivo.

Vet Microbiol

Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009,PR China.

Published: May 2020

Encephalomyocarditis virus (EMCV) infects many mammalian species, causing myocarditis, encephalitis and reproductive disorders. The small interference RNA (siRNA) targeting to the virus has not been understood completely. Here, two out of six interference sequences were screened to inhibit significantly EMCV replication by using recombinant plasmids expressing small hairpin RNA (shRNA) targeting to the viral 1C or 2A genes in BHK-21 cells. And two recombinant adenoviruses expressing the shRNAs were constructed and named as rAd-1C-1 and rAd-2A-3. They inhibit EMCV replication in BHK-21 cells in protein levels, as well as the virus yields by approximately 1000 times. Furthermore, they provide high protective efficacy against the challenge with virulent EMCV NJ08 strain in mice. And the EMCV loads in the live mice in rAd-1C-1 and rAd-2A-3 groups decrease by more than 90 % compared with those in the dead mice in the challenge control groups at the same times. It indicates that the adenoviruses medicated shRNA targeting to 1C and 2A genes might provide a potential strategy for combating EMCV infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2020.108664DOI Listing

Publication Analysis

Top Keywords

shrna targeting
12
encephalomyocarditis virus
8
targeting genes
8
inhibit emcv
8
emcv replication
8
bhk-21 cells
8
rad-1c-1 rad-2a-3
8
emcv
6
inhibition encephalomyocarditis
4
virus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!