Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
N-methyladenosine (mA) is an RNA modification well-known for its contribution to different processes controlling RNA metabolism, including splicing, stability, and translation of mRNA. Conversely, the role of mA on the biogenesis and function of circular RNAs (circRNAs) has yet to be addressed. circRNAs belong to a class of covalently closed transcripts produced via a back-splicing reaction whereby a downstream 5' splice donor site fuses to an upstream 3' splice acceptor site. Starting from circ-ZNF609 as a study case, we discover that specific mAs control its accumulation and that METTL3 and YTHDC1 are required to direct the back-splicing reaction. This feature is shared with other circRNAs because we find a significant direct correlation among METTL3 requirement, YTHDC1 binding, and the ability of mA exons to undergo back-splicing. Finally, because circ-ZNF609 displays the ability to be translated, we show that mA modifications, through recognition by YTHDF3 and eIF4G2, modulate its translation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2020.107641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!