The Histone Methyltransferase G9a Controls Axon Growth by Targeting the RhoA Signaling Pathway.

Cell Rep

Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina; Centro de Investigación en Medicina Traslacional "Severo R Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Friuli 2786, 5016 Córdoba, Argentina. Electronic address:

Published: May 2020

The generation of axonal and dendritic domains is critical for brain circuitry assembly and physiology. Negative players, such as the RhoA-Rho coiled-coil-associated protein kinase (ROCK) signaling pathway, restrain axon development and polarization. Surprisingly, the genetic control of neuronal polarity has remained largely unexplored. Here, we report that, in primary cultured neurons, expression of the histone methyltransferase G9a and nuclear translocation of its major splicing isoform (G9a/E10+) peak at the time of axon formation. RNAi suppression of G9a/E10+ or pharmacological blockade of G9a constrains neuronal migration, axon initiation, and the establishment of neuronal polarity in situ and in vitro. Inhibition of G9a function upregulates RhoA-ROCK activity by increasing the expression of Lfc, a guanine nucleotide exchange factor (GEF) for RhoA. Together, these results identify G9a as a player in neuronal polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2020.107639DOI Listing

Publication Analysis

Top Keywords

histone methyltransferase
8
methyltransferase g9a
8
signaling pathway
8
neuronal polarity
8
g9a
5
g9a controls
4
axon
4
controls axon
4
axon growth
4
growth targeting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!