Fosamprenavir calcium is an amprenavir prodrug of the protease inhibitors class used in the treatment of patients with acquired immunodeficiency syndrome (AIDS). Different solid forms of this drug are described in patents, in this sense studies on the physico-chemical characterization and stability are relevant for the selection of a solid form with adequate features for pharmaceutical purposes. In the present work form I (commercial) and amorphous of fosamprenavir calcium were characterized by the techniques of Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Powder X-ray Diffraction (PXRD), Fourier-Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Furthermore, the chemical and polymorphic stability of the commercial form were evaluated by DSC, PXRD, FTIR and High-Performance Liquid Chromatography (HPLC). In the studies of characterization, thermal analyses allied to spectroscopic methods (PXRD and FTIR) demonstrated that the presence of water in the crystalline structure of Form I is fundamental for maintaining its crystallinity. In studies of accelerated stability the techniques of DSC, PXRD and FTIR showed that Form I does not suffer phase change when submitted to controlled conditions of temperature and humidity. Moreover, HPLC and FTIR proved the chemical stability of this solid form of fosamprenavir, thus demonstrating its suitability for pharmaceutical purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202020181021 | DOI Listing |
Herein, a novel magnetic resorcinol-formaldehyde-supported isatin-Schiff-base/Fe complex (FeO@RF-ISB/Fe) is prepared and characterized and its catalytic performance is investigated in the synthesis of pyrano[2,3-]pyrimidines. The FeO@RF-ISB nanomaterial was prepared through the chemical immobilization of (3-aminopropyl)trimethoxysilane over the FeO@RF composite, followed by treatment with isatin. The FeO@RF-ISB was then reacted with FeCl·6HO to afford the FeO@RF-ISB/Fe nanocatalyst.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411, Tehran, Iran.
In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.
View Article and Find Full Text PDFRSC Adv
January 2025
Dipartimento di Scienze e Innovazione Tecnologica, Università Del Piemonte Orientale A. Avogadro Viale T. Michel 11 15121 Alessandria Italy
A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.
View Article and Find Full Text PDFAnal Methods
January 2025
CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, 364 002, India.
In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil. Electronic address:
Farnesol (FAR) belongs to terpenes group and is a sesquiterpene alcohol and a hydrophobic compound, which can be extracted from natural sources or obtained by organic chemical or biological synthesis. Recent advances in the field of nanotechnology allow the drawbacks of low drug solubility, which can improve the drug therapeutic index. Therefore, this study aimed to prepare the FAR inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) through freeze-drying method, proposing their physicochemical characterization, comparing their toxicity, and evaluating their in vitro antibacterial activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!