Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cerebral blood flow (CBF) is commonly inferred from blood velocity measurements in the middle cerebral artery (MCA), using nonimaging, transcranial Doppler ultrasound (TCD). However, both blood velocity and vessel diameter are critical components required to accurately determine blood flow, and there is mounting evidence that the MCA is vasoactive. Therefore, the aim of this study was to employ imaging TCD (ITCD), utilizing color flow images and pulse wave velocity, as a novel approach to measure both MCA diameter and blood velocity to accurately quantify changes in MCA blood flow. ITCD was performed at rest in 13 healthy participants (7 men/6 women; 28 ± 5 yr) with pharmaceutically induced vasodilation [nitroglycerin (NTG), 0.8 mg] and without (CON). Measurements were taken for 2 min before and for 5 min following NTG or sham delivery (CON). There was more than a fivefold, significant, fall in MCA blood velocity in response to NTG (∆-4.95 ± 4.6 cm/s) compared to negligible fluctuation in CON (∆-0.88 ± 4.7 cm/s) ( < 0.001). MCA diameter increased significantly in response to NTG (∆0.09 ± 0.04 cm) compared with the basal variation in CON (∆0.00 ± 0.04 cm) ( = 0.018). Interestingly, the product of the NTG-induced fall in MCA blood velocity and increase in diameter was a significant increase in MCA blood flow following NTG (∆144 ± 159 ml/min) compared with CON (∆-5 ± 130 ml/min) ( = 0.005). These juxtaposed findings highlight the importance of measuring both MCA blood velocity and diameter when assessing CBF and document ITCD as a novel approach to achieve this goal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468794 | PMC |
http://dx.doi.org/10.1152/ajpregu.00025.2020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!