Dy@CN: a new member of dimetalloazafullerenes with strong single molecular magnetism.

Nanoscale

Beijing National Laboratory for Molecular Science, State Key Lab of Rare Earth, Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peiking University, Beijing, 100871, P. R. China.

Published: May 2020

Enhancing the exchange interaction between magnetic ions is a long-term target in molecular magnetism. Endohedral metallofullerenes (EMFs) provide a possibility for achieving such a goal by imprisoning multiple magnetic centers inside the confined inner space of a fullerene cage. Here, we report a new member of dimetallic azafullerene Dy2@C79N via crystallographic determination for the first time. Magnetic studies indicate that the strong ferromagnetic coupling between lanthanide ions and unpaired electrons enables Dy2@C79N to be a favorable SMM with large energy barrier of U = 669 K and observable hysteresis loops below 24 K.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr02519dDOI Listing

Publication Analysis

Top Keywords

molecular magnetism
8
dy@cn member
4
member dimetalloazafullerenes
4
dimetalloazafullerenes strong
4
strong single
4
single molecular
4
magnetism enhancing
4
enhancing exchange
4
exchange interaction
4
interaction magnetic
4

Similar Publications

Obesity and type 2 diabetes (T2D) are strongly linked to abnormal adipocyte metabolism and adipose tissue (AT) dysfunction. However, existing adipose tissue models have limitations, particularly in the stable culture of fat cells that maintain physiologically relevant phenotypes, hindering a deeper understanding of adipocyte biology and the molecular mechanisms behind differentiation. Current model systems fail to fully replicate in vivo metabolism, posing challenges in adipose research.

View Article and Find Full Text PDF

Molecular miscibility of ASD blend components: an evaluation of (the added value of) solid state NMR spectroscopy and relaxometry.

J Pharm Sci

January 2025

Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium. Electronic address:

In order to evaluate the stability of an amorphous solid dispersion (ASD) it is crucial to be able to accurately determine whether the ASD components are homogeneously mixed or not. Several solid-state analysis techniques are at the disposal of the formulation scientist, such as for example modulated differential scanning calorimetry (mDSC) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). ssNMR is a robust, versatile, and accurate analysis technique with a large number of application possibilities.

View Article and Find Full Text PDF

Cuproptosis is a newly discovered mode of cell death, which is caused by excess copper and results in cell death via the mitochondrial pathway. However, the complex tumor microenvironment (TME) is characterized by many factors, including high levels of glutathione and lack O, limit the application of traditional cuproptosis agents in antitumor therapy. Herein, we report a hyaluronic acid modified copper-manganese composite nanomedicine (CMCNs@HA) to remodel the TME and facilitate efficient cuproptosis in tumor.

View Article and Find Full Text PDF

The magnetization strategy of isoquinoline alkaloids has been successfully used in the extraction and isolation, but the effect of the magnetization on biological activities of those alkaloids still deserves further investigation. Therefore, the antibacterial, lipid-lowering and antioxidant activities of five isoquinoline alkaloids (berberine, tetrahydroberberine, palmatine, tetrahydropalmatine and tetrahydropapavine) before and after magnetization were compared in this study, and the results showed that the relevant activities were enhanced after magnetization. Additionally, among the five magnetic derivatives studied, berberine magnetic derivative ([Ber·H][FeCl]) had the best antibacterial effect on S.

View Article and Find Full Text PDF

Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!