Improving dimensional stability of dental amalgam by using Nano Zinc Oxide.

J Pak Med Assoc

ACRC-Polymer and Plastic Section, PCSIR labs complex, Karachi, Pakistan.

Published: May 2020

Objective: To investigate the dimensional stability of dental amalgam after the incorporation of zinc oxide nano powder.

Methods: The experimental study was conducted at the Hamdard University Dental Hospital and the Pakistan Council of Scientific and Industrial Research laboratories, Karachi, from January to June, 2018. Direct precipitation method was used in which analytical grade sodium hydroxide and zinc nitrate hex hydrate were used without any further purification. The sample was randomly divided into two groups. The control group A had 0 wt.% of nano zinc oxide, while the experimental group was further divided into 2 subgroups, with group B containing samples having 3 wt.% and group C 5 wt.% of nano zinc oxide. Delayed expansion was checked using electron micrometer. Data was analysed using SPSS 22.

Results: Of the 180 samples, there were 90(50%) in control group A, and 45(25%) each in experimental groups B and C. Subgroup B showed significantly more linear expansion than subgroup C. Subgroups B and C achieved their entire linear expansion after 24 hours.

Conclusions: There was improvement in the dimensional stability of dental amalgam after the incorporation of nano particles of zinc oxide.

Download full-text PDF

Source
http://dx.doi.org/10.5455/JPMA.10690DOI Listing

Publication Analysis

Top Keywords

zinc oxide
20
dimensional stability
12
stability dental
12
dental amalgam
12
nano zinc
12
amalgam incorporation
8
control group
8
group wt%
8
wt% nano
8
linear expansion
8

Similar Publications

Effect of Irrigation Solution Temperature on Bioceramic Sealer Bond Strength.

Med Sci Monit

January 2025

Department of Endodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey.

BACKGROUND Different temperature conditions can affect the efficiency of irrigation solutions and consequently the ability of canal sealers to bond to root canal walls. The aim of this endodontic study was to evaluate the effect of irrigation solutions at different temperatures on the bond strength of a bioceramic-based root canal sealer. MATERIAL AND METHODS Root canal preparations were completed through irrigation with the following solutions: Group 1 was irrigated with 5 ml NaOCl (sodium hypochlorite) +5 ml EDTA (Ethylenediamine tetra-acetic acid) (22°C); Group 2 was irrigated with 5 ml NaOCl +5 ml EDTA (37°C); Group 3 was irrigated with 5 ml NaOCl +5 ml GA (Glycolic acid) (22°C); Group 4 was irrigated with 5 ml NaOCl +5 ml GA (37°C), Group 5 was irrigated with 20 ml Dual Rinse® HEDP (Etidronate) - NaOCl mixture (22°C); and Group 6 was irrigated with 20 ml of Dual Rinse® HEDP mixture (37°C).

View Article and Find Full Text PDF

Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.

View Article and Find Full Text PDF

The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress.

View Article and Find Full Text PDF

Background: Fascioliasis represents one of the most significant parasitic and foodborne zoonotic diseases in the world. Resistance to currently deployed human and veterinary flukicides is a growing health problem. Zinc oxide nanoparticles (ZnO-NPs) have developed enormous importance in nanomedicine.

View Article and Find Full Text PDF

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!