Milano Retinexes are spatial color algorithms grounded on the Retinex theory and widely applied to enhance the visual content of real-world color images. In this framework, they process the color channels of the input image independently and re-scale channel by channel the intensity of each pixel by the so-called local reference white, i.e., a strictly positive value, computed by reworking a set of features sampled around . The neighborhood of to be sampled, its sampling, the features to be processed, as well as the mathematical model for the computation of the local reference white vary from algorithm to algorithm, determining different levels of enhancement. Based on the analysis of a group of Milano Retinexes, this work proves that the Milano Retinex local reference whites can be expressed by a generalized equation whose parameters model specific aspects of the Milano Retinex spatial color processing. In particular, tuning these parameters leads to different Milano Retinex implementations. This study contributes to a better understanding of the similarities and differences among the members of the Milano Retinex family, and provides new taxonomic schemes of them based on their own mathematical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.384197DOI Listing

Publication Analysis

Top Keywords

milano retinex
20
local reference
12
generalized equation
8
retinex family
8
milano retinexes
8
spatial color
8
reference white
8
milano
7
retinex
6
equation real-world
4

Similar Publications

Milano Retinexes are spatial color algorithms grounded on the Retinex theory and widely applied to enhance the visual content of real-world color images. In this framework, they process the color channels of the input image independently and re-scale channel by channel the intensity of each pixel by the so-called local reference white, i.e.

View Article and Find Full Text PDF

A spatial color algorithm grounded on the Retinex theory is known as a Milano Retinex. This type of algorithm performs image enhancement by processing spatial and color cues in the neighborhood of each image pixel. Because this local, pixel-wise analysis is time consuming, optimization techniques are needed to expand the use of Milano Retinexes to applications that require fast or even real-time image processing.

View Article and Find Full Text PDF

Milano Retinex is a family of spatial color algorithms inspired by Retinex and mainly devoted to the image enhancement. In the so-called point-based sampling Milano Retinex algorithms, this task is accomplished by processing the color of each image pixel based on a set of colors sampled in its surround. This paper presents STAR, a segmentation based approximation of the point-based sampling Milano Retinex approaches: it replaces the pixel-wise image sampling by a novel, computationally efficient procedure that detects once for all the color and spatial information relevant to image enhancement from clusters of pixels output by a segmentation.

View Article and Find Full Text PDF

Modeling the local color spatial distribution is a crucial step for the algorithms of the Milano Retinex family. Here we present GREAT, a novel, noise-free Milano Retinex implementation based on an image-aware spatial color sampling. For each channel of a color input image, GREAT computes a 2D set of edges whose magnitude exceeds a pre-defined threshold.

View Article and Find Full Text PDF

Retinex is an early and famous theory attempting to estimate the human color sensation derived from an observed scene. When applied to a digital image, the original implementation of retinex estimates the color sensation by modifying the pixels channel intensities with respect to a local reference white, selected from a set of random paths. The spatial search of the local reference white influences the final estimation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!