Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Based on theoretical investigations of the light propagation within an integrating sphere, we developed an accurate method to determine the optical properties of scattering media using an integrating sphere-based setup. The method takes into account the exact sphere geometry as well as the different angular distributions of the reflected and transmitted light from the sample and the calibration standard. We tested our novelties successfully in theory with Monte Carlo simulations and in practice using a 3D printed and professionally coated integrating sphere. As a result, we were able to determine precisely the effective scattering coefficient, , and the absorption coefficient, , between 400 nm and 1500 nm in a range of =1-3 to 10 and =0.2 to 100. Usually, the accuracy was around 1% for and around 3% for for turbid phantom media with an optical thickness =>1 and a transmittance signal >0.1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.385939 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!