Through decades of efforts and practices, we have achieved great progress in understanding ocean biology and biogeochemistry through satellite measurements of ocean (water) color, or passive remote sensing. These include detailed global maps of the distribution of surface phytoplankton, the production of newly formed particulate organic matter through photosynthesis (i.e., primary production), as well as the change and feedback of phytoplankton in a changing climate, to name a few. However, these results are still far from a full account of ocean biology and biogeochemistry, where we want more detailed information of phytoplankton (e.g., types and sizes), as well as information in the vertical dimension. For such, we are happy to see new developments in ocean optics and ocean color remote sensing. These include, but certainly are not limited to, hyperspectral sensors, measurements via polarized setups, as well as ocean lidar systems. In particular, through pumping laser light into deeper ocean, lidar has demonstrated great potential to fill the gap of passive ocean color remote sensing. These developments in technology are providing exciting new findings where breakthroughs in ocean biogeochemistry are on the horizon. Thus, we organized this feature issue in Applied Optics to summarize a few recent developments and achievements, where readers and the community can easily capture progress on both fronts, as well as the potential and advantages of the fusion of passive and active optical sensing. Specifically, this issue contains 12 papers describing research in both active and passive optical remote sensing of aquatic environment. They are still limited in number and subject, but are expected to stimulate the ocean color community with findings relevant for satellite applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.392549DOI Listing

Publication Analysis

Top Keywords

remote sensing
20
ocean color
12
ocean
10
active passive
8
passive optical
8
optical remote
8
sensing aquatic
8
aquatic environment
8
feature issue
8
ocean biology
8

Similar Publications

An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach.

Syst Biol Reprod Med

December 2025

Department of Mathematics and Computer Science, Laboratory of Analysis, Modeling and Simulation, Faculty of Sciences Ben M'sik, Hassan II University of Casablanca, Casablanca, Morocco.

Infertility has emerged as a significant public health concern, with assisted reproductive technology (ART) is a last-resort treatment option. However, ART's efficacy is limited by significant financial cost and physical discomfort. The aim of this study is to build Machine learning (ML) decision-support models to predict the optimal range of embryo numbers to transfer, using data from infertile couples identified through literature reviews.

View Article and Find Full Text PDF

What makes β-NaYF:Er,Yb such a successful luminescent thermometer?

Nanoscale

January 2025

Inorganic Photoactive Materials, Institute of Inorganic Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.

Luminescence thermometry has emerged as a promising approach for remote, non-invasive temperature sensing at the nanoscale. One of the simplest approaches in that regard is single-ion luminescence Boltzmann thermometry that exploits thermal coupling between two radiatively emitting levels. The working horse example for this type of luminescence thermometry is undoubtedly the green-emitting upconversion phosphor β-NaYF:Er,Yb exploiting the thermal coupling between the two excited H and S levels of Er for this purpose.

View Article and Find Full Text PDF

Urban sensing in the era of large language models.

Innovation (Camb)

January 2025

Institute of Remote Sensing and Geographical Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China.

Urban sensing has become increasingly important as cities evolve into the centers of human activities. Large language models (LLMs) offer new opportunities for urban sensing based on commonsense and worldview that emerged through their language-centric framework. This paper illustrates the transformative impact of LLMs, particularly in the potential of advancing next-generation urban sensing for exploring urban mechanisms.

View Article and Find Full Text PDF

Background: Many respiratory diseases such as pneumoconiosis require to close monitor the symptoms such as abnormal respiration and cough. This study introduces an automated, nonintrusive method for detecting cough events in clinical settings using a flexible chest patch with tri-axial acceleration sensors.

Methods: Twenty-five young healthy persons (hereinafter referred to as healthy adults) and twenty-five clinically diagnosed pneumoconiosis patients (hereinafter referred to as patients) participated in the experiment by wearing a flexible chest patch with an embedded ACC sensor.

View Article and Find Full Text PDF

The development and implementation of county carbon control action plans in the Yellow River Basin (YRB) are crucial for realizing the "dual carbon" goals and modernizing national governance. Utilizing remote sensing data from 2001 to 2020, this study constructs a light-carbon conversion model and a carbon footprint model to simulate the carbon footprint of county energy consumption in the YRB. Employing spatial autocorrelation and spatial Durbin models, the study examines the temporal-spatial evolution characteristics and spatial effect mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!