Sample-induced optical aberrations in microscopy are, in general, field dependent, limiting their correction via pupil adaptive optics (AO) to the center of the available field-of-view (FoV). This is a major hindrance, particularly for deep tissue imaging, where AO has a significant impact. We present a new wide-field AO microscopy scheme, in which the deformable element is located at the pupil plane of the objective. To maintain high-quality correction across its entirety, the FoV is partitioned into small segments, and a separate aberration estimation is performed for each via a modal-decomposition-based indirect wavefront sensing algorithm. A final full-field image is synthesized by stitching of the partitions corrected consecutively and independently via their respective measured aberrations. The performance and limitations of the method are experimentally explored on synthetic samples imaged via a custom-developed AO fluorescence microscope featuring an optofluidic refractive wavefront modulator.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.388000DOI Listing

Publication Analysis

Top Keywords

adaptive optics
8
extended field-of-view
4
field-of-view adaptive
4
optics microscopy
4
microscopy numerical
4
numerical field
4
field segmentation
4
segmentation sample-induced
4
sample-induced optical
4
optical aberrations
4

Similar Publications

Objective: To propose Deep-RPD-Net, a 3-dimensional deep learning network with semisupervised learning (SSL) for the detection of reticular pseudodrusen (RPD) on spectral-domain OCT scans, explain its decision-making, and compare it with baseline methods.

Design: Deep learning model development.

Participants: Three hundred fifteen participants from the Age-Related Eye Disease Study 2 Ancillary OCT Study (AREDS2) and 161 participants from the Dark Adaptation in Age-related Macular Degeneration Study (DAAMD).

View Article and Find Full Text PDF

Numerous thyroid diseases can impact patients' lives, one of which is Graves' ophthalmopathy (GO). Graves' ophthalmopathy is a progressive thyroid-related disease that causes eye symptoms due to an autoimmune reaction targeting thyrotropin/thyroid stimulating hormone (TSH) receptors in the orbital space. This condition can be easily recognized by the patient, including exophthalmos, pain, swelling, double vision, and impaired vision.

View Article and Find Full Text PDF

Optimizing autonomous artificial intelligence diagnostics for neuro-ocular health in space missions.

Life Sci Space Res (Amst)

February 2025

Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, United States.

Spaceflight-Associated Neuro-Ocular Syndrome (SANS) presents a critical risk in long-duration missions, with microgravity-induced changes that threaten astronaut vision and mission outcomes. Current SANS monitoring, limited to pre- and post-flight exams, lacks in-flight diagnostics, highlighting an urgent need for autonomous tools capable of real-time assessment. Grok, an AI platform by xAI, offers promising potential as an advanced diagnostic tool for space-based health monitoring.

View Article and Find Full Text PDF

Mild cognitive impairment (MCI) is an intermediate state between normal aging and dementia, and its symptoms include easy forgetting, distraction, and mental deterioration. This directly affects the patient's motor function, daily living ability, and social adaptability, and brings many difficulties to the patient's reintegration into society. Therefore, clinical research on MCI is very necessary.

View Article and Find Full Text PDF

Motor variability regulation analysis in trampolinists.

J Biomech

January 2025

Laboratoire de Simulation et Modélisation du Mouvement, Université de Montréal, Montréal, QC, Canada. Electronic address:

In trampolining, optimizing body orientation during landing reduces injury risk and enhances performance. As trampolinists are subject to motor variability, anticipatory inflight corrections are necessary to regulate their body orientation before landing. We investigated the evolution of a) body orientation and b) limb position (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!