We have developed a new fundamental ray aberration analysis that extends conventional ray matrix analysis to the third-order region using a four-element fundamental ray vector. This analysis method can analyze the factors in the generation of the Seidel aberration coefficients by separating them into the transform characteristics of rays unique to the optical system and paraxial trace values representing the conjugate relationship. In establishing this analysis, we first introduce the fundamental ray aberration, and we present calculation formulae for the fundamental ray aberration coefficients of a co-axial rotationally symmetric optical system. Numerical examples employing these analysis results are shown, and it is confirmed that the causes of the Seidel aberration coefficients can be analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.389600DOI Listing

Publication Analysis

Top Keywords

fundamental ray
24
ray aberration
16
aberration coefficients
12
aberration analysis
8
ray matrix
8
matrix analysis
8
analysis third-order
8
third-order region
8
region four-element
8
four-element fundamental
8

Similar Publications

High-Entropy Metal Interstitials Activate TiO for Robust Catalytic Oxidation.

Adv Mater

January 2025

Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, Department of Environmental Science and Engineering, Center of Advanced Nanocatalysis (CAN), University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China.

Substitution metal doping strategies are crucial for developing catalysts capable of activating O, but the leaching of metal dopants has greatly hindered their potential for extensive oxidation reactions under mild conditions. Here, the study develops an entropy-increase strategy to synthesize high-entropy metal (Mg, Ca, Mn, Fe, and Co) interstitial functionalized anatase TiO (HE-TiO) nanosheets, demonstrating remarkable degradation efficiency across a wide pH range and exceptional stability in a flow-by electro-catalytic reactor. Relative to that of pristine TiO, the intense lattice distortion on the (001) plane, an average lattice expansion of 2% on the (100) plane, and decrease of second shell peak of X-ray absorption spectra serve as compelling evidence for the formation of metal interstitials in HE-TiO.

View Article and Find Full Text PDF

In recent decades, the field of bone mechanobiology has sought experimental techniques to unravel the molecular mechanisms governing the phenomenon of mechanically regulated fracture healing. Each cell within a fracture site resides within different local microenvironments characterized by different levels of mechanical strain; thus, preserving the spatial location of each cell is critical in relating cellular responses to mechanical stimuli. Our spatial transcriptomics-based "mechanomics" platform facilitates spatially resolved analysis of the molecular profiles of cells with respect to their local in vivo mechanical environment by integrating time-lapsed in vivo micro-computed tomography, spatial transcriptomics, and micro-finite element analysis.

View Article and Find Full Text PDF

Purpose: We are developing a three-dimensional X-ray fluorescence computed tomography (3D XFCT) system using non-radioactive-labeled compounds for preclinical studies as a new modality that provides images of biological functions. Improvements in image quality and detection limits are required for the in vivo imaging. The aim of this study was to improve the quality of XFCT images by applying a deep image prior (DIP), which is a type of convolutional neural network, to projection images as a pre-denoising method, and then compare with DIP post-denoising.

View Article and Find Full Text PDF

Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryogenic electron microscopy (cryo-EM) preserves the native hydrated state.

View Article and Find Full Text PDF

Accurate lung nodule segmentation is fundamental for the early detection of lung cancer. With the rapid development of deep learning, lung nodule segmentation models based on the encoder-decoder structure have become the mainstream research approach. However, during the encoding process, most models have limitations in extracting edge and semantic information and in capturing long-range dependencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!