AI Article Synopsis

  • This paper introduces a new and straightforward method to enhance spectral resolution in traditional static Fourier transform spectrometers through a process called heterodyning.
  • Utilizing a single transmission grating placed at the image plane of two coherent beams from an interferometer, it splits the beams into diffraction orders to create a unique heterodyned interferogram.
  • The study shows that the system's improved spectral resolution depends on the angle between the beams and the groove period of the grating, with experimental results validating the theoretical predictions.

Article Abstract

This paper presents a novel, to the best of our knowledge, and simple technique for achieving a higher spectral resolution in classical static Fourier transform spectrometers. This is achieved by heterodyning the frequency of a standard interferogram to a lower spatial frequency by placing a single transmission grating at the image plane of two mutually coherent beams produced by the interferometer. The grating splits the beams into diffraction orders, which overlap to produce the heterodyned interferogram, similar to that seen in techniques such as spatial heterodyne spectroscopy. The increase in spectral resolution for such a system is shown to be related to the angle between the beams and the groove period of the transmission grating. The theoretical performance of this design is compared with a proof-of-concept system built using off-the-shelf components and tested at visible wavelengths. The experimental results agree well with those produced from a theoretical simulation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.389949DOI Listing

Publication Analysis

Top Keywords

spectral resolution
8
transmission grating
8
compact spatially
4
spatially heterodyned
4
heterodyned static
4
static interferometer
4
interferometer paper
4
paper presents
4
presents novel
4
novel best
4

Similar Publications

This work describes the design and implementation of optics for EXCLAIM, the EXperiment for Cryogenic Large-Aperture Intensity Mapping. EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide at redshifts z < 1 and ionized carbon ([CII]) at redshifts z = 2.5 - 3.

View Article and Find Full Text PDF

Identification of Novel Iodinated Polyfluoroalkyl Ether Acids and Other Emerging PFAS in Soils Using a Nontargeted Molecular Network Approach.

Environ Sci Technol

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Despite advancements in high-resolution screening techniques, the identification of novel perfluoroalkyl and polyfluoroalkyl substances (PFAS) remains challenging without prior structural information. In view of this, we proposed and implemented a new data-driven algorithm to calculate spectral similarity among PFAS, facilitating the generation of molecular networks to screen for unknown compounds. Using this approach, 81 PFAS across 12 distinct classes were identified in soil samples collected near an industrial park in Shandong Province, China, including the first reported occurrence of 12 iodine-substituted PFAS.

View Article and Find Full Text PDF

Purpose: To compare a novel high-resolution optical coherence tomography (OCT) with improved axial resolution (High-Res OCT) with conventional spectral-domain OCT (SD-OCT) with regard to their capacity to characterize the disorganization of the retinal inner layers (DRIL) in diabetic maculopathy.

Methods: Diabetic patients underwent multimodal retinal imaging (SD-OCT, High-Res OCT, and color fundus photography). Best-corrected visual acuity and diabetes characteristics were recorded.

View Article and Find Full Text PDF

Functionalization of Polymer Surfaces for Organic Photoresist Materials.

ACS Appl Mater Interfaces

January 2025

Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741, United States.

Photoresists are thin film materials designed to transform an optimal image into a mechanical mask. Diverse exposure techniques such as photolithography induce modifications in the exposed areas that result in solubility changes that can then be selectively removed with appropriate agents (developers). Photoresist materials need to keep pace with the increasingly demand for feature size reduction.

View Article and Find Full Text PDF

Knowledge of the structure-property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!