Cyanobacteria and microalgae are characterized by a rich and varied profile of chlorophyll (8-20 mg/g) and carotenoid (>2.2 mg/g) pigments, being noteworthy material for natural pigment production in the food industry. We propose a systematic workflow that uses high-performance liquid chromatography (HPLC) coupled with high-resolution tandem mass spectrometry in a broadband collision-induced dissociation mode (bbCID) acquisition mode to simultaneously obtain MS and MS spectra. Metabolomic studies showed for the first time the presence of carotenoids with 5,6-epoxy-groups (5,6-epoxy- and 5,8-furanoid β-cryptoxanthin), carotenoids from the α-branch (5,8-furanoid-2'-3'-didehydro α-cryptoxanthin), and 2'-dehydrodeoxomyxol in cyanobacteria. To support the new findings, an search retrieved the putative sequences of carotenogenic enzymes involved in the corresponding biosynthetic pathways (ZEP, NSY, CrtL-b and CrtR) in the analyzed cyanobacteria species. Consequently, high-throughput metabolomics studies assisted by molecular analysis offer a powerful tool for providing insights into the characterization of bioactive compounds and their metabolism in cyanobacteria and microalgae.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c01306DOI Listing

Publication Analysis

Top Keywords

cyanobacteria microalgae
8
cyanobacteria
5
accomplished high-resolution
4
high-resolution metabolomic
4
metabolomic molecular
4
molecular studies
4
studies identify
4
identify carotenoid
4
carotenoid biosynthetic
4
biosynthetic reactions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!