Direct N-Glycosylation of Amides/Amines with Glycal Donors.

J Org Chem

Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China.

Published: June 2020

Direct N-glycosylation between glycals and amides/amines was achieved with exclusive stereoselectivity in moderate to high yields. Various amides, amines, and 3,4--carbonate-glycals were tolerated, and unique β--glycosides were obtained. The strategy was based on palladium-catalyzed decarboxylative allylation, and the high 1,4-cis-selectivity was proposed because of the hydrogen bonding effect. Notably, all the synthesized products were subjected to preliminary bioactivity studies, revealing that three compounds were cytotoxic to tumor cells and nontoxic to normal human cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.0c00975DOI Listing

Publication Analysis

Top Keywords

direct n-glycosylation
8
n-glycosylation amides/amines
4
amides/amines glycal
4
glycal donors
4
donors direct
4
n-glycosylation glycals
4
glycals amides/amines
4
amides/amines achieved
4
achieved exclusive
4
exclusive stereoselectivity
4

Similar Publications

Structural basis of Epstein-Barr virus gp350 receptor recognition and neutralization.

Cell Rep

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China. Electronic address:

Epstein-Barr virus (EBV) is an oncogenic virus associated with multiple lymphoid malignancies and autoimmune diseases. During infection in B cells, EBV uses its major glycoprotein gp350 to recognize the host receptor CR2, initiating viral attachment, a process that has lacked direct structural evidence for decades. In this study, we resolved the structure of the gp350-CR2 complex, elucidated their key interactions, and determined the site-specific N-glycosylation map of gp350.

View Article and Find Full Text PDF

Mutant Calreticulin in MPN: Mechanistic Insights and Therapeutic Implications.

Curr Hematol Malig Rep

January 2025

Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Purpose Of Review: More than a decade following the discovery of Calreticulin (CALR) mutations as drivers of myeloproliferative neoplasms (MPN), advances in the understanding of CALR-mutant MPN continue to emerge. Here, we summarize recent advances in mehanistic understanding and in targeted therapies for CALR-mutant MPN.

Recent Findings: Structural insights revealed that the mutant CALR-MPL complex is a tetramer and the mutant CALR C-terminus is exposed on the cell surface.

View Article and Find Full Text PDF

Effect of CHO cell line constructed with CMAH gene-directed integration on the recombinant protein expression.

Int J Biol Macromol

December 2024

International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China. Electronic address:

Chinese hamster ovary (CHO) cells are the most widely used platform for recombinant therapeutic protein (RTP) production. Traditionally, the development of CHO cell lines has mainly depended on random integration of transgenes into the genome, which is not conducive to stable long-term expression. Cytidine monophosphate N-acetylneuraminic acid hydroxylase (CMAH) is expressed in CHO cells and produces N-hydroxyacetylneuraminic acid, which may cause a human immune response.

View Article and Find Full Text PDF

Mass spectrometric detection of neutrophil elastase cleaved corticosteroid binding globulin and its association with Asn347 site glycosylation, in septic shock patients.

Clin Chim Acta

December 2024

Department of Medicine, University of Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Australia; Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Australia.

Background: Corticosteroid-binding globulin (CBG) modulates tissue cortisol availability via modification of cortisol:CBG binding affinity in response to multiple factors, including neutrophil elastase (NE) cleavage of the reactive centre loop (RCL), converting high affinity CBG (haCBG) to low affinity CBG (laCBG). In vitro, glycosylation of the RCL at Asn347 affects NE cleavage susceptibility. To date, no direct measurement of laCBG, which would verify NE cleavage, has been reported.

View Article and Find Full Text PDF

ALG13-Related Epilepsy: Current Insights and Future Research Directions.

Neurochem Res

December 2024

Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China.

The ALG13 gene encodes a subunit of the uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) transferase enzyme, which plays a key role in the N-linked glycosylation pathway. This pathway involves the attachment of carbohydrate structures to asparagine (Asn) residues in proteins within the endoplasmic reticulum, by which N-glycosylated proteins produced participate a wide range of processes such as electrical gradients formation and neurotransmission. Mutations in the ALG13 gene have been identified as a causative factor for congenital disorders of glycosylation (CDG) and have been frequently associated with epilepsy in affected individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!