Purpose: Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant disorder that affects the anterior segment of the eye. The aim of this study was to examine the PITX2 gene to identify possible novel mutations in Pakistani and Mexican families affected by the ARS phenotype.
Methods: Three unrelated probands with a diagnosis of ARS were recruited for this study. Genomic DNA was isolated from the peripheral blood of the probands and their family members. Polymerase chain reaction and Sanger sequencing were used for the analysis of coding exons and the flanking intronic regions of the PITX2 gene. Bioinformatics tools and database (VarSome, Provean, and MutationTaster, SIFT, PolyPhen-2, and HOPE) were evaluated to explore missense variants.
Results: We identified novel heterozygous variations in the PITX2 gene that segregated with the ARS phenotype within the families. The variant NM_153426.2(PITX2):c.226G > T or p.(Ala76Ser) and the mutation NM_153426.2(PITX2):c.455G > A or p.(Cys152Tyr) were identified in two Pakistani pedigrees, and the mutation NM_153426.2(PITX2):c.242_265del or p.(Lys81_Gln88del), segregated in a Mexican family.
Conclusion: Our study extends the spectrum of PITX2 mutations in individuals with ARS, enabling an improved diagnosis of this rare but serious syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336731 | PMC |
http://dx.doi.org/10.1002/mgg3.1215 | DOI Listing |
Curr Biol
January 2025
Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong District, Shanghai 200433, China; Aix-Marseille Université, CNRS, EFS, ADES, 27 Boulevard Jean Moulin, Marseille 13005, France; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK. Electronic address:
Dental morphology varies greatly throughout evolution, including in the human lineage, but little is known about the biology of this variation. Here, we use multiomics analyses to examine the genetics of variation in tooth crown dimensions. In a human cohort with mixed continental ancestry, we detected genome-wide significant associations at 18 genome regions.
View Article and Find Full Text PDFCancer Med
December 2024
Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK.
Purpose: Carbonic anhydrase IX (CAIX) is a well-established prognostic marker in breast cancer (BC). Nevertheless, this prognostic value is yet to be confirmed in BC subtypes. This study aims to investigate the prognostic effects of CAIX in oestrogen receptor (ER)-negative (ER-) BCs and to establish pathways related to cytoplasmic CAIX expression in ER- and lymph node-negative BCs.
View Article and Find Full Text PDFSemin Ophthalmol
December 2024
Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad, Telangana, India.
Background: The anterior segment of the eye plays a crucial role in maintaining the normal intraocular pressure and vision. Developmental defects in the anterior segment structures lead to anterior segment dysgenesis (ASD) and primary congenital glaucoma (PCG), which share overlapping clinical features. Several genes have been mapped and characterized in ASD, some of which are also involved in other glaucoma phenotypes.
View Article and Find Full Text PDFInt J Environ Res Public Health
October 2024
Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane 4072, Australia.
Lung cancer (LC) is a significant global health issue, with smoking as the most common cause. Recent epidemiological studies have suggested that individuals who smoke are more susceptible to COVID-19. In this study, we aimed to investigate the influence of smoking and COVID-19 on LC using bioinformatics and machine learning approaches.
View Article and Find Full Text PDFOphthalmic Genet
December 2024
Department of Medical, Shanghai Fujungenetics Biotechnology Co., Ltd., Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!