Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Primary prevention of overweight is to be preferred above secondary prevention, which has shown moderate effectiveness.
Objective: To develop and internally validate a dynamic prediction model to identify young children in the general population, applicable at every age between birth and age 6, at high risk of future overweight (age 8).
Methods: Data were used from the Prevention and Incidence of Asthma and Mite Allergy birth cohort, born in 1996 to 1997, in the Netherlands. Participants for whom data on the outcome overweight at age 8 and at least three body mass index SD scores (BMI SDS) at the age of ≥3 months and ≤6 years were available, were included (N = 2265). The outcome of the prediction model is overweight (yes/no) at age 8 (range 7.4-10.5 years), defined according to the sex- and age-specific BMI cut-offs of the International Obesity Task Force.
Results: After backward selection in a Generalized Estimating Equations analysis, the prediction model included the baseline predictors maternal BMI, paternal BMI, paternal education, birthweight, sex, ethnicity and indoor smoke exposure; and the longitudinal predictors BMI SDS, and the linear and quadratic terms of the growth curve describing a child's BMI SDS development over time, as well as the longitudinal predictors' interactions with age. The area under the curve of the model after internal validation was 0.845 and Nagelkerke R was 0.351.
Conclusions: A dynamic prediction model for overweight was developed with a good predictive ability using easily obtainable predictor information. External validation is needed to confirm that the model has potential for use in practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507129 | PMC |
http://dx.doi.org/10.1111/ijpo.12647 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!