As a result of their attractive optoelectronic properties, metal halide APbI perovskites employing formamidinium (FA ) as the A cation are the focus of research. The superior chemical and thermal stability of FA cations makes α-FAPbI more suitable for solar-cell applications than methylammonium lead iodide (MAPbI ). However, its spontaneous conversion into the yellow non-perovskite phase (δ-FAPbI ) under ambient conditions poses a serious challenge for practical applications. Herein, we report on the stabilization of the desired α-FAPbI perovskite phase by protecting it with a two-dimensional (2D) IBA FAPb I (IBA=iso-butylammonium overlayer, formed via stepwise annealing. The α-FAPbI /IBA FAPb I based perovskite solar cell (PSC) reached a high power conversion efficiency (PCE) of close to 23 %. In addition, it showed excellent operational stability, retaining around 85 % of its initial efficiency under severe combined heat and light stress, that is, simultaneous exposure with maximum power tracking to full simulated sunlight at 80 °C over 500 h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202005211 | DOI Listing |
Nanomaterials (Basel)
December 2024
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient () has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300093, Taiwan.
Three new bithiophene imide (BTI)-based organic small molecules, (), (), and (), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs.
View Article and Find Full Text PDFEnergy Environ Sci
December 2024
Department of Physics, University of Oxford, Clarendon Laboratory Oxford OX1 3PU UK
It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials Science and Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, Georgia 30332, United States.
Bulky organic cations are used in perovskite solar cells as a protective barrier against moisture, oxygen, and ion diffusion. However, bulky cations can introduce thermal instabilities by reacting with the near-surface of the 3D perovskite forming low-dimensional phases, including 2D perovskites, and by diffusing away from the surface into the film. This study explores the thermal stability of CsFAPbI 3D perovskite surfaces treated with two anthracene salts─anthracen-1-ylmethylammonium iodide (AMAI) and 2-(anthracen-1-yl)ethylammonium iodide (AEAI)─and compares them with the widely used phenethylammonium iodide (PEAI).
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
The rapidly increased efficiency of perovskite solar cells (PSCs) indicates their broad commercial prospects, but the commercialization of perovskite faces complex optimization processes and stability issues. In this work, a simple optimized strategy is developed by the addition of trimethylgermanium chloride (TGC) into FACsPbI precursor solution. TGC triggers the successive interactions in perovskite solution and film, involving the hydrolysis of vulnerable Ge─Cl bond forming Ge─OH group, then forming the hydrogen bonds (O─H···N and O─H···I) with FAI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!