Epoxyeicosatrienoic acids (EET) and related epoxy fatty acids (EpFA) are endogenous anti-inflammatory compounds, which are converted by the soluble epoxide hydrolase (sEH) to dihydroxylethersatrienoic acids (DHETs) with lessened biological effects. Inhibition of sEH is used as a strategy to increase EET levels leading to lower inflammation. Rheumatoid arthritis is a chronic autoimmune disease that leads to destruction of joint tissues. This pathogenesis involves a complex interplay between the immune system, and environmental factors. Here, we investigate the effects of inhibiting sEH with 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) on a collagen-induced arthritis model. The treatment with TPPU ameliorates hyperalgesia, edema, and decreases the expression of important pro-inflammatory cytokines of Th1 and Th17 profiles, while increasing Treg cells. Considering the challenges to control RA, this study provides robust data supporting that inhibition of the sEH is a promising target to treat arthritis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383812 | PMC |
http://dx.doi.org/10.1096/fj.202000415R | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!