Background: Gongronema latifolium (G. latifolium) Benth. leaves are traditionally used to treat diabetes mellitus (DM) and other diseases in Nigeria and West Africa. This study was performed to evaluate the neuroprotective effect of aqueous extract of G. latifolium leaf against DM. Antidiabetic activity of G. latifolium extracts (6.36, 12.72 and 25.44 mg kg , i.p.) was determined in alloxan-induced diabetic rats. Fasting blood glucose level and oxidative stress markers catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), malondialdehyde (MDA), and nitric oxide (NO) levels were measured. Cognitive biomarkers acetylcholinesterase (AChE), butyrylcholinesterase (BChE), dopamine (DOPA), serotonin, epinephrine and norepinephrine and cyclooxygenase (COX-2) were measured in the brain of controls and of G. latifolium-treated diabetic rats.

Results: Administration of G. latifolium leaf extract to diabetic rats significantly restored the alterations in the levels of fasting blood glucose (FBG). The MDA and NO levels were significantly reduced with an improvement in CAT, SOD, and GPx activity in the kidneys and brains of diabetic rats treated with G. latifolium. Gongronema latifolium also significantly decreased the levels of AChE, BChE, DOPA, serotonin, epinephrine, and nor-epinephrine in diabetic rats. G. latifolium effectively ameliorated COX-2 in diabetic rats.

Conclusion: This study showed that leaf extract of G. latifolium improved antioxidant defense against oxidative stress. It displays a neuroprotective effect resulting in the modulation of brain neurotransmitters, which could be considered as a promising treatment therapy. © 2020 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.10491DOI Listing

Publication Analysis

Top Keywords

diabetic rats
16
gongronema latifolium
12
leaf extract
12
oxidative stress
12
latifolium
9
latifolium benth
8
extract latifolium
8
latifolium leaf
8
fasting blood
8
blood glucose
8

Similar Publications

Objectives: This study aimed to determine the effect of 8-week high-intensity interval training (HIIT) on oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes (T2D). The study focused on examining the role of proliferator-activated receptor gamma co-activator 1α (PGC1α)/Kelch-like ECH-associated protein Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.

Materials And Methods: Twenty-eight 8-week-old Wistar rats were randomly assigned to one of four groups (n=7): control (Con), type 2 diabetes (T2D), exercise (Ex), and exercise + type 2 diabetes (Ex+T2D).

View Article and Find Full Text PDF

Objectives: While ketone bodies are not the main heart fuel, exercise may increase their uptake. Objectives: This study aimed to investigate the effect of 6-week endurance training and Pyruvate dehydrogenase kinase 4 )PDK4( inhibition on ketone bodies metabolism in the heart of diabetic rats with emphasis on the role of Peroxisome proliferator-activated receptor-gamma coactivator PGC-1alpha (PGC-1α).

Materials And Methods: Sixty male Wistar rats were divided into eight groups: healthy control group (CONT), endurance training group (TRA), diabetic group (DM), DM + EX group, Dichloroacetate (DCA) group, DM + DCA group, TRA + DCA group, and DM + TRA + DCA group.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the effects of pre-conditioning exercise on body lipid metabolism, leptin secretion, and the downstream pathways at the early stage of type 2 diabetes mellitus (T2DM).

Materials And Methods: The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection.

View Article and Find Full Text PDF

Objectives: Increased nuclear factor (NF-kβ) and carbonyl stress due to decreased glyoxalase-1 activity (Glo-I) contribute significantly to insulin resistance and vascular complications. Therefore, we aimed to study the impact of the combination of thiamine and niacin on hepatic NF-kβ signaling, metabolic profile, and Glo-I activity in male rats with type-2 diabetes (T2DM).

Materials And Methods: Forty male rats were divided equally into five groups: control, diabetic, diabetic treated with thiamine (180 mg/l in drinking water), niacin (180 mg/l), and a combination of both.

View Article and Find Full Text PDF

Metformin ameliorates peripheral neuropathy in diabetic rats by downregulating autophagy via the AMPK pathway.

Arch Endocrinol Metab

January 2025

Fuzhou First General Hospital Affiliated with Fujian Medical University Department of Endocrinology FuzhouFujian China Department of Endocrinology, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China.

Objective: Diabetic neuropathy (DN) is an important complication of diabetes mellitus. Autophagy is considered to be potentially involved in the regulation of DN. Metformin is broadly utilized in the first-line treatment of diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!