It is now well appreciated that the crowded intracellular environment significantly modulates an array of physiological processes including protein folding-unfolding, aggregation, and dynamics to name a few. In this work we have studied the dynamics of domain I of the protein human serum albumin (HSA) in its urea-induced denatured states, in the presence of a series of commonly used macromolecular crowding agents. HSA was labeled at Cys-34 (a free cysteine) in domain I with the fluorophore 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN) to act as a solvation probe. In partially denatured states (2-6 M urea), lower crowder concentrations (~ < 125 g/L) induced faster dynamics, while the dynamics became slower beyond 150 g/L of crowders. We propose that this apparent switch in dynamics is an evidence of a crossover from soft (enthalpic) to hard-core (entropic) interactions between the protein and crowder molecules. That soft interactions are also important for the crowders used here was further confirmed by the appreciable shift in the wavelength of the emission maximum of BADAN, in particular for PEG8000 and Ficoll 70 at concentrations where the excluded volume effect is not dominant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00249-020-01435-y | DOI Listing |
Antimicrob Agents Chemother
January 2025
Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
Peptide-based therapeutics are gaining attention for their potential to target various viral and host cell factors. One notable example is Pep19-2.5 (Aspidasept), a synthetic anti-lipopolysaccharide peptide that binds to heparan sulfate proteoglycans (HSPGs) and has demonstrated inhibitory effects against certain bacteria and enveloped viruses.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Engineering, University of Exeter, Exeter EX4 4QF, UK.
A rapidly growing body of experimental evidence in the literature shows that the effects of humans interacting with vibrating structures, other humans, and their surrounding environment can be critical for reliable estimation of structural vibrations. The Interaction-based Vibration Serviceability Assessment framework (I-VSA) was proposed by the authors in 2017 to address this, taking into account human-structure dynamic interactions (HSI) to simulate the structural vibrations experienced by each occupant/pedestrian. The I-VSA method, however, had limited provisions to simulate simultaneously multiple modes of structure in HSI, to simulate human-human and human-environment interactions, and the movement pattern of the occupants/pedestrians.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, 119121 Moscow, Russia.
This study aimed to investigate whether the water-soluble pharmaceutical form of phosphatidylcholine nanoparticles (wPC) stimulated the catalytic activity of CYP enzymes 2C9 and 2D6. We have shown that electroenzymatic CYP2C9 catalysis to nonsteroidal anti-inflammatory drug naproxen as a substrate was enhanced from 100% to 155% in the presence of wPC in media. Electroenzymatic CYP2D6 activity in the presence of the adrenoceptor-blocking agent bisoprolol as a substrate was elevated significantly from 100% to 144% when wPC was added to potassium phosphate buffer solution.
View Article and Find Full Text PDFMath Biosci
January 2025
Department of Mathematics, University of Houston, Houston, TX, 77204, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
Foraging strategies are shaped by interactions with the environment, and evolve under metabolic constraints. Optimal strategies for isolated and competing organisms have been studied extensively in the absence of evolution. Much less is understood about how metabolic constraints shape the evolution of an organism's ability to detect and reach food.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160062, Punjab, India.
Aptamers bind to their targets with exceptional affinity and specificity. However, their intracellular application is hampered by the lack of knowledge about the effect of the cellular milieu on the RNA structure/stability. In this study, cellular crowding was mimicked using polyethylene glycol (PEG), and the crucial role of Mg ions in stabilizing the structure of an RNA aptamer was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!