Because of the presence of tannin in the molecular structure of oak extract, this substance is used as a natural coagulant to remove turbidity from water. The aim of this study was to determine the efficiency of this coagulant alone and in combination with polyaluminium chloride (PACl) in turbidity removal from water under optimal conditions. In this experimental study, Iranian oak extract was prepared by maceration method using ethanol 96% as an extractor. Kaolin was used to prepare synthetic turbid water samples. Using the jar test, the optimum concentrations of oak extract and PACl were determined in various concentrations of initial turbidity and pH. Moreover, the central composite design (CCD) method was utilized to design experiments and RSM was applied for analyzing the obtained results. Optimum concentrations of oak extract and PACl were 62.6 mg/L and 52.6 mg/L, respectively. An increase in initial turbidity and pH led to an increase in turbidity removal by the two coagulants. The efficiency of turbidity removal by oak extract and PACl was 63.5% and 66.5%, respectively. The simultaneous application of oak extract and polyaluminium chloride increased removal efficiency (85%) and reduced the total organic carbon concentration (TOC) in water (42.3%). The results showed that the simultaneous application of Iranian oak extract and polyaluminium chloride had an acceptable performance in removing turbidity from water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203360 | PMC |
http://dx.doi.org/10.1007/s40201-020-00449-0 | DOI Listing |
Antibiotics (Basel)
November 2024
Department of Biology, School of Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
Cork oak forests have been declining due to fungal pathogens such as . However, the preventive fungicides against this fungus have restricted use due to the deleterious effects on human health and the environment, prompting the need for sustainable alternatives. Here, we describe the antifungal activity of an aqueous extract of L.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Chemical selectivity is traditionally understood in the context of rigid molecular scaffolds with precisely defined local coordination and chemical environments that ultimately facilitate a given transformation of interest. By contrast, nature leverages dynamic structures and strong coupling to enable specific interactions with target species in otherwise complex media. Taking inspiration from nature, we demonstrate unconventional selectivity in the solvent extraction of light over heavy lanthanides using a conformationally flexible ligand called octadecyl acyclopa (ODA).
View Article and Find Full Text PDFPLoS One
December 2024
Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration (FDA), Silver Spring, MD, United States of America.
During the SARS-CoV-2 pandemic, a need for methods to decontaminate and reuse personal protective equipment (PPE) and medical plastics became a priority. In this investigation we aimed to develop a contamination evaluation protocol for laboratory pipette tips, after decontamination. Decontamination methods tested in this study included cleaning with a common laboratory detergent (2.
View Article and Find Full Text PDFNat Commun
December 2024
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
Methods to prepare and characterize neutron helical waves carrying orbital angular momentum (OAM) were recently demonstrated at small-angle neutron scattering (SANS) facilities. These methods enable access to the neutron orbital degree of freedom which provides new avenues of exploration in fundamental science experiments as well as in material characterization applications. However, it remains a challenge to recover phase profiles from SANS measurements.
View Article and Find Full Text PDFChem Mater
December 2024
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Solid polymer electrolytes have yet to achieve the desired ionic conductivity (>1 mS/cm) near room temperature required for many applications. This target implies the need to reduce the effective energy barriers for ion transport in polymer electrolytes to around 20 kJ/mol. In this work, we combine information extracted from existing experimental results with theoretical calculations to provide insights into ion transport in single-ion conductors (SICs) with a focus on lithium ion SICs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!