Introduction: The extreme health and economic problems in the world due to the SARS-CoV-2 infection have led to an urgent need to identify potential drug targets for treating coronavirus disease 2019 (COVID-19). The present state-of-the-art tool-based screening was targeted to identify drug targets among clinically approved drugs by uncovering SARS-CoV-2 helicase inhibitors through molecular docking analysis.

Material And Methods: Helicase is a vital viral replication enzyme, which unwinds nucleic acids and separates the double-stranded nucleic acids into single-stranded nucleic acids. Hence, the SARS-CoV-2 helicase protein 3D structure was predicted, validated, and used to screen the druggable targets among clinically approved drugs such as protease inhibitor, nucleoside reverse transcriptase inhibitor, and non-nucleoside reverse transcriptase inhibitors, used to treat HIV infection using molecular docking analysis.

Results: Interaction with SARS-CoV-2 helicase, approved drugs, vapreotide (affinity: -12.88; score: -9.84 kcal/mol), and atazanavir (affinity: -11.28; score: -9.32 kcal/mol), approved drugs for treating AIDS-related diarrhoea and HIV infection, respectively, are observed with significantly low binding affinity and MOE score or binding free energy. The functional binding pockets of the clinically approved drugs on SARS-CoV-2 helicase protein molecule suggest that vapreotide and atazanavir may interrupt the activities of the SARS-CoV-2 helicase.

Conclusions: The study suggests that vapreotide may be a choice of drug for wet lab studies to inhibit the infection of SARS-CoV-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212215PMC
http://dx.doi.org/10.5114/aoms.2020.94567DOI Listing

Publication Analysis

Top Keywords

approved drugs
24
clinically approved
16
sars-cov-2 helicase
16
drug targets
12
targets clinically
12
nucleic acids
12
sars-cov-2
8
molecular docking
8
helicase protein
8
reverse transcriptase
8

Similar Publications

Background: Antibody-drug conjugate (ADC) is an anticancer drug that links toxins to specifically targeted antibodies via linkers, offering the advantages of high target specificity and high cytotoxicity. However, complexity of its structural composition poses a greater difficulty for drug design studies.

Objectives: Pharmacokinetic/pharmacodynamic (PK/PD) based consideration of ADCs has increasingly become a hot research topic for optimal drug design in recent years, providing possible ideas for obtaining ADCs with desirable properties.

View Article and Find Full Text PDF

The impact of solute carrier proteins on disrupting substance regulation in metabolic disorders: insights and clinical applications.

Front Pharmacol

January 2025

Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions.

View Article and Find Full Text PDF

Introduction Depression is a prevalent and debilitating condition that often requires long-term medication management. Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are commonly used but have limitations in efficacy and tolerability for some individuals. New antidepressant drugs targeting multiple pathways have shown potential in recent research.

View Article and Find Full Text PDF

ROR1 CAR-T cells and ferroptosis inducers orchestrate tumor ferroptosis via PC-PUFA2.

Biomark Res

January 2025

Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.

Background: Lung cancer, particularly non-small cell lung cancer (NSCLC), has high recurrence rates and remains a leading cause of cancer-related death, despite recent advances in its treatment. Emerging therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown promise but face significant challenges in targeting solid tumors. This study investigated the potential of combining receptor tyrosine kinase-like orphan receptor 1 (ROR1)-targeting CAR-T cells with ferroptosis inducers to promote ferroptosis of tumor cells and enhance anti-tumor efficacy.

View Article and Find Full Text PDF

Mesenchymal stromal cell exosomes for drug delivery of prostate cancer treatments: a review.

Stem Cell Res Ther

January 2025

Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin Province, People's Republic of China.

Interest in prostate cancer as a research topic has gradually increased. As a result, a series of innovative treatment strategies have emerged with an in-depth understanding of the disease. Owing to their unique biological characteristics, mesenchymal stromal cell exosomes (MSC-Exos) have garnered significant attention for their potential to deliver targeted drugs and enable precise prostate cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!