Therapeutic treatment of various inflammation-related diseases using mesenchymal stem cells (MSCs) has increased in recent years because of the paracrine action of these cells but shows several limitations. First, MSC-based therapies exhibit varying efficacies; thus, biomarkers should be determined to identify who may benefit from these candidate therapeutic agents. Second, the mechanism underlying the therapeutic effects is poorly understood. To evaluate the effects of human umbilical cord blood-derived MSCs (UCB-MSCs) on macrophages, the macrophage cell line NR8383 stimulated with lipopolysaccharide (LPS) was cocultured by UCB-MSCs. We found that UCB-MSCs mediated changes in macrophage polarization towards M2 from M1 macrophages. To identify the paracrine action underlying the anti-inflammation effect of UCB-MSCs, the secretion of UCB-MSCs exposed to LPS-stimulated NR8383 cells was tested using a biotin label-based 507 antibody array. Among the secreted proteins, we selected pentraxin-related protein PTX3/tumor necrosis factor-inducible gene 14 protein (PTX3) to investigate its association with UCB-MSCs in macrophage polarization. We found that human PTX3 was secreted from UCB-MSCs under inflammation condition and reinforced the M2 macrophage marker via the Dectin-1 receptor by activating MSK1/2 phosphorylation signaling in NR8383 cells. Accordingly, knockdown of PTX3 in UCB-MSCs significantly attenuated their therapeutic effects in a neonatal hyperoxic lung injury resulting in reduced survival, lung alveolarization, M2 marker expression, Dectin-1 levels, anti-inflammatory cytokines, and improved M1 marker expression and inflammatory cytokines compared to control MSC-injected rats. UCB-MSCs show therapeutic potential by controlling macrophage polarization. Interestingly, higher PTX3 levels in UCB-MSCs induced greater improvement in the therapeutic effects than lower PTX3 levels. Collectively, PTX3 is a potential marker with critical paracrine effects for predicting the therapeutic potential of MSC therapy in inflammatory diseases; quality control assessments using PTX3 may be useful for improving the therapeutic effects of UCB-MSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204119 | PMC |
http://dx.doi.org/10.1155/2020/1802976 | DOI Listing |
Food Sci Nutr
January 2025
Department of Physiology, College of Medicine Gyeongsang National University Jinju Republic of Korea.
Our previous study highlighted the anticancer potential of sea hare hydrolysate (SHH), particularly its role in regulating macrophage polarization and inducing pyroptotic death in lung cancer cells through the inhibition of signal transducer and activator of transcription 3 (STAT3). These findings prompted us to investigate additional features of immune-oncology (I-O) agents or adjuvants, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibition and their association with rheumatoid arthritis (RA) risk, to explore the potential of SHH as an I-O agent or adjuvant. In this study, we investigated the effects of SHH on PD-L1 levels in various cancer cell types and assessed its effectiveness in treating RA, a common side effect of I-O agents.
View Article and Find Full Text PDFAnal Cell Pathol (Amst)
January 2025
Department of Urology, The First Hospital of Jilin University, Changchun, China.
This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC). Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China.
The Transforming Growth Factor-beta (TGF-β) signaling pathway, with SMAD4 as its central mediator, plays a pivotal role in regulating cellular functions, including growth, differentiation, apoptosis, and immune responses. While extensive research has elucidated SMAD4's role in tumorigenesis, its functions within immune cells remain underexplored. This review synthesizes current knowledge on SMAD4's diverse roles in various immune cells such as T cells, B cells, dendritic cells, and macrophages, highlighting its impact on immune homeostasis and pathogen response.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China.
Background: It is well established that the interaction between osteogenesis and inflammation can impact bone tissue regeneration. The use of nanoparticles to treat and alleviate inflammation at the molecular level has the potential to improve the osteogenic microenvironment and serve as a therapeutic approach.
Methods: We have synthesized new hollow cerium oxide nanoparticles and doped with cathepsin B inhibitor (CA-074Me) to create novel CeO@CA-074Me NPs.
Bioeng Transl Med
January 2025
Institute of Pediatric Translational Medicine, Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Shanghai China.
Diabetic wounds present a significant challenge in regenerative medicine due to impaired healing, characterized by prolonged inflammation and deficient tissue repair, primarily caused by a skewed pro-inflammatory macrophage phenotype. This study investigates the therapeutic potential of interleukin-10 (IL-10) chemically modified mRNA (modRNA)-enriched human adipose-derived multipotent stromal cells (hADSCs) in a well-established murine model of diabetic wounds. The modRNAs used in this study were chemically modified using N1-methylpseudouridine-5'-triphosphate (m1Ψ) by substituting uridine-5-triphosphate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!